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Abstract 

The Effects of GSPT1 Degradation on Serum Calcium, Parathyroid Hormone, and Fibroblast 

Growth Factor 23 Concentrations in Human Cereblon Knock-in Mice 

By Kamran Ghoreishi, M.S. 

 

Dissertation Chair: William J. Korzun, Ph.D.  

Associate Professor 

Department of Clinical Laboratory Sciences 

 

Test article CC-325 is a potent oral cereblon (CRBN) modulator that has shown potent 

G1 to S phase transition 1 (GSPT1) degradation and anti-tumor activity in pre-clinical models. 

One of the adverse effects associated with CC-325 was dose dependent hypocalcemia, which 

was determined to be an on-target toxicity.  

To investigate the mechanism of hypocalcemia, we conducted a toxicity study in human 

cereblon (huCRBN) knock-in (KI) mice with CC-325. The huCRBN KI mice are transgenic 

mice engineered to express human cereblon that is capable of binding to CRBN and degrading 

GSPT1.  Four groups of mice were treated with vehicle (0 mg/kg), CC-325 (50 mg/kg BID), 

NPS 2143 (120 mg/kg), or CC-325 + NPS 2143.  The NPS 2143 is an oral negative allosteric 

modulator of calcium sensing receptor (CaSR), which upon administration to mice significantly 

increased plasma ionized calcium (iCa2+) and parathyroid hormone (PTH). Mice treated with 

CC-325 alone had significant decreases in serum iCa2+ and PTH, while mice treated with NPS 

2143 alone as expected had significant increases in serum iCa2+ and PTH.  Treatment of mice 

with CC-325 + NPS 2143 did not reverse the decreases in serum iCa2+ and PTH caused by  

CC-325, indicating that CC-325 prevents the increase of PTH.  To investigate the mechanism of 
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hypocalcemia, we stained parathyroid gland for PTH by immunohistochemistry (IHC) and 

showed significantly lower PTH in parathyroid with CC-325 treated mice compared to vehicle or 

NPS 2143 treated mice.  To further investigate the cause of low PTH in parathyroid gland in 

mice treated with CC-325, we stained parathyroid with in-situ hybridization (ISH) probes for 

PTH mRNA.  Results from this analysis showed significantly lower PTH mRNA in parathyroid 

of CC-325 mice compare to vehicle or NPS 2143 mice, indicating that lower serum PTH in  

CC-325 treated mice were due to decreased PTH mRNA in Chief cells.  

These data collectively indicate that hypocalcemia caused by CC-325 is due to reduction 

in PTH, which leads to hypocalcemia. Additionally, mice treated with CC-325 are unable to 

restore normocalcemia because their parathyroid gland did not synthesize sufficient PTH for 

release into blood stream.  Lack of PTH synthesis is caused by diminished level of PTH mRNA 

in parathyroid gland.  

We also measured the level of FGF23 in mice treated with CC-325. Our data indicated 

that decrease in PTH significantly decreased FGF23 levels even in presence of 

hyperphosphatemia, indicating that PTH plays a big role in controlling FGF23 during 

hypoparathyroidism. The cause of decrease in PTH mRNA in parathyroid, whether it is related to 

lower transcription of PTH mRNA or lack of stability of PTH mRNA, remains to be determined.   
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CHAPTER 1:  INTRODUCTION 

Calcium (Ca2+) is the most abundant mineral in the bone, and has several short- and long-

term physiological functions in the body including mediation of cell proliferation or apoptosis, 

exocytosis, muscle contraction, and neurotransmitter release (Diaz-Soto, Rocher,  

Garcia-Rodriguez, Nunez, & Villalobos, 2016). The mediation of these functions and several 

intracellular signaling pathways is critically dependent upon the intracellular and extracellular 

concentrations. In human plasma, 35-40% of the calcium is bound to proteins, mostly to 

albumin. Approximately10-15% of calcium is complexed with bicarbonate, phosphate, lactate 

and citrate, while 50% of calcium is “free”, also known as “ionized calcium” (iCa2+) 

(Glendenning, 2013).  The concentration of total calcium in serum ranges from 2.10-2.60 mmol/l 

(8.5-10.5 mg/dL), while the iCa2+ concentration is 1.16-1.31 mmol/l (4.65-5.25 mg/dl) and is 

tightly controlled by the action of parathyroid hormone (PTH) (Cooper & Gittoes, 2008).  

In humans, a decrease in total serum calcium below 2.1 mmol/L (8.5 mg/dl), or ionized 

calcium lower than 1.1 mmol/L (4.6 mg/dl), is considered hypocalcemia (Liamis, Milionis, & 

Elisaf, 2009). 

Hypocalcemia can be asymptomatic in mild cases, but potentially life-threatening in 

severe cases. The clinical manifestations of hypocalcemia associated with decrease in PTH, 

known as hypoparathyroidism, vary with the severity of hypoparathyroidism, which ranges from 

mild hypocalcemia with few symptoms, such as numbness and tingling in the face and hands, to 

severe and life-threatening symptoms including seizures, congestive heart failure, and 

bronchospasm (Hakami & Khan, 2019) 

Hypocalcemia occurs in about 18% of all patients in the hospital, and 85% of patients in 

intensive care units.  The most common cause of hypocalcemia in patients in the hospital is 
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vitamin D deficiency (Cooper & Gittoes, 2008). Hypoparathyroidism, is another cause for 

hypocalcemia (Hakami & Khan, 2019). Clinical manifestation of hypoparathyroidism is driven 

by hypocalcemia, which has an impact on a large number of tissues and organs including muscle, 

heart, brain, kidney, gastrointestinal tract, and skin (Giusti & Brandi, 2019).  Hypocalcemia has 

also been associated with many drugs, including cisplatin, antiepileptics, bisphosphonates, 

aminoglycosides, diuretics, loop diuretics estrogens, and drugs that can cause vitamin D 

deficiency or resistance (Fong & Khan, 2012; Liamis et al., 2009).  

Calcium homeostasis is maintained by the parathyroid gland, kidney, bone, and intestine, 

with multiple points of regulation.  The parathyroid gland responds to changes in iCa2+ 

concentration in the extracellular space and alters the secretion of PTH. The concentration of 

PTH in plasma regulates calcium resorption from bone, calcium reabsorption by the renal 

tubules, and vitamin D activation in the kidney, which promotes calcium and phosphate 

absorption in the intestines. Fibroblast growth factor 23 (FGF23), and αklotho, either in blood or 

as a transmembrane protein, mediate calcium homeostasis by binding to its receptor in the 

parathyroid gland and kidney (Moe, 2016).  PTH-stimulated 1-α hydroxylase (CYP27B1) 

activity in the kidney results in increased level of activated vitamin D (1,25(OH)2D) in plasma, 

which feeds back on the parathyroid to suppress PTH secretion and decrease calcium.  An 

increase in the serum 1,25(OH)2D also stimulates FGF23 synthesis in the bone and membrane-

bound αKlotho in the kidney.  Increased FGF23 production in the bone inhibits the activity of the 

CYP27B1 in the kidney, leading to 1,25(OH)2D reduction and subsequently a drop in plasma 

calcium (Hu, Shi, & Moe, 2019).    Fibroblast growth factor 23 suppresses PTH secretion in the 

short term but increases secretion in the long term (Kawakami et al., 2017). In acute 

hypocalcemia, when increased PTH secretion is needed to restore the calcium homeostasis, the 
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FGF23 inhibitory effect is diminished.  However, to date, there is no published data on the 

effects and concentrations of FGF23 under hypoparathyroidism conditions with suppressed 

plasma calcium concentration.   

PTH is a peptide hormone comprising 84 amino acids, encoded by a gene on 

chromosome 11 in humans.  It is synthesized by Chief cells in the parathyroid gland as a larger 

precursor called PreproPTH, which moves through the cell from the endoplasmic reticulum and 

Golgi body, until it reaches the secretory vesicles where the final processing take place(Hinson et 

al., 2016).  PTH works with the other calcium-regulating hormones, such as 1,25(OH)2D and 

calcitonin, to control the expression of parathyroid transcription factors and the calcium sensing 

receptor (CaSR) (Hakami & Khan, 2019).  The release of PTH stored in secretory granules 

within the parathyroid gland and the synthesis of new PTH impact plasma PTH concentrations 

and therefore calcium concentration in the plasma (Kumar & Thompson, 2011). A decrease in 

extracellular iCa2+ concentration induces PTH secretion but is promptly inhibited by G Protein i 

(Gi)-dependent inhibition of adenylate cyclase in the presence of high iCa2+ concentration. An 

increase in PTH production results in increased resorption of calcium from the bones, increased 

reabsorption of filtered calcium by the renal tubules, and increased production of 1, 25(OH)2D in 

the kidney.  This increase in 1,25(OH)2D subsequently increases the calcium absorption by the 

small intestine (Diaz-Soto et al., 2016).  An increase in PTH secretion by the parathyroid gland 

elevates plasma iCa2+ concentration; high levels of iCa2+ in turn promote the thyroid gland to 

release calcitonin. Calcitonin slows down the activity of the osteoclasts in bone, which decreases 

serum iCa2+ levels. (E. M. Brown & MacLeod, 2001; Ma et al., 2011).    

 PTH synthesis is modulated by several transcription factors, including GATA binding 

protein 3 (GATA3), Glial cells missing-2 (Gcm2), which is a zinc finger-type transcription 
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factor, and v-maf musculoaponeurotic fibrosarcoma oncogene homologue B (MafB). These 

proteins are essential for normal parathyroid gland development, and interact with each other to 

activate the PTH gene promotor (T. Naveh-Many & Silver, 2018).  GATA3 recognizes G-A-T-A 

nucleotide sequences in targeted gene promoters and activates or represses those genes. The 

genes that regulate GATA3 in the parathyroid gland remain unknown, despite its role in 

regulation and development of the parathyroid gland (Han, Tsunekage, & Kataoka, 2015).  In 

humans, GATA3 haplo-insufficiency is associated with hypoparathyroidism, deafness, and renal 

dysplasia (HDR) syndrome (Irina V. Grigorieva & Thakker, 2011). GATA3 expression has been 

detected in the human thymus, inner ear, central nervous system, kidney and parathyroid gland 

(Muroya et al., 2001; Van Esch et al., 2000).   

The transcription factor Gcm2 is a known regulator for embryonic development of the 

parathyroid glands and is involved in adult parathyroid cell proliferation and cell death. 

Reduction of Gcm2 in the adult parathyroid gland causes changes in cell death patterns and 

reduced cell proliferation (Yamada et al., 2019).  Parathyroid cell differentiation and survival 

also require Gcm2 (Liu, Yu, & Manley, 2007); Gcm2 knockout mice have been shown to have 

lower serum PTH levels by six months of age (Morito et al., 2018; Yuan, Opas, Vrikshajanani, 

Libutti, & Levine, 2014). 

Downstream of Gcm2 is another transcription factor known as MafB, which is a critical 

transcription factor for development and differentiation of the parathyroid gland.  In  

MafB-deficient (MafB-/-) mice, the separation of parathyroid glands from the thymus during the 

embryological development does not occur; subsequently, the expression of PTH is severely 

reduced in the parathyroid gland of neonates (Morito et al., 2018).  The MafB protein directly 

regulates PTH synthesis by binding to the promotor of the PTH gene (Morito et al., 2018).  
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However, the role of MafB in other tissues is not well understood, because MafB-/- mice display 

other developmental anomalies.   

A ubiquitous transcription factor specificity protein 1 (SP1), which is a known GC box-

binding protein, physically interacts with GATA3, Gcm2, and MafB (Han et al., 2015).  

Furthermore, evidence suggests that GATA3, Gcm2, and MafB and SP1 interact with each other 

when two of them are co-expressed.  It is believed that these transcription factors synergistically 

activate PTH gene transcription (Irina V. Grigorieva & Thakker, 2011; Han et al., 2015).  Of 

these three transcription factors, GATA3 is the most upstream, followed by Gcm2, and then 

MafB in parathyroid development (T. Naveh-Many & Silver, 2018).   

MafB is involved in PTH expression; however, it has a more important role in 

development and differentiation of the parathyroid gland.  Hypocalcemia induced by 

ethylenediamine tetraacetic acid (EDTA) or adenine-induced renal failure model in MafB wild-

type mice have shown that reduction in extracellular calcium concentration regulated MafB 

through CaSR.   In MafB+/- mice, plasma PTH is similar to wild-type under normal conditions; 

however, hypocalcemia induced by ethylene glycol tertaacetic acid (EGTA) in MafB+/- mice 

resulted in impaired increase in serum PTH, PTH mRNA, parathyroid cell proliferation, and 

serum calcium (Morito et al., 2018; T. Naveh-Many & Silver, 2018). 

The modulation of PTH secretion by iCa2+ in blood is accomplished via the extracellular 

calcium-sensing receptor (CaSR). This transmembrane protein is a G protein-coupled receptor 

(GPCR) activated by extracellular iCa2+ and by other physiological cations including ionized 

magnesium (iMg2+), amino acids, and polyamines.  The CaSR is an important controller of 

extracellular calcium homeostasis.  It is expressed at high levels in the parathyroid gland, kidney, 

bone and intestine (Diaz-Soto et al., 2016).  The CaSR regulates PTH gene expression by a  
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post-transcriptional mechanism (Edward M. Brown, 2013; Levi et al., 2006).  Activation of the 

CaSR enhances the expression of vitamin D receptor (VDR) (Edward M. Brown, 2013; 

Rodriguez et al., 2007).  It also mediates intracellular degradation of PTH that occurs during 

hypercalcemia (Edward M. Brown, 2013; Morrissey, Hamilton, MacGregor, & Cohn, 1980).  

The VDR expressed in the parathyroid gland is also increased after administration of 

1,25(OH)2D (Calcitriol) (Justin Silver & Naveh-Many, 2018).  Binding of 1,25(OH)2D  to the 

VDR decreases PTH mRNA and gene expression, parathyroid cell proliferation, and serum PTH 

concentration (Justin Silver & Naveh-Many, 2018; J. Silver, Naveh-Many, Mayer, Schmelzer, & 

Popovtzer, 1986; J. Silver, Russell, & Sherwood, 1985). Administration of 1,25(OH)2D in rats 

increases VDR mRNA and decreases PTH mRNA in the parathyroid gland (T. Naveh-Many, 

Marx, Keshet, Pike, & Silver, 1990).  An increase in 1,25(OH)2D level reduces PTH gene 

expression and parathyroid cell proliferation; while activation of CaSR by hypercalcemia 

suppresses PTH production, secretion, parathyroid cellular proliferation, and PTH gene 

expression; as well as decrease1,25(OH)2D production. This is a feedback loops in that PTH 

synthesis and secretion, and 1,25(OH)2D production, initially stimulated by reductions in 

circulating iCa2+ and 1,25(OH)2D levels are subsequently shut off as iCa2+ and 1,25(OH)2D 

concentrations return to normal.     

In patients with chronic kidney disease (CKD), administration of calcimimetics such as 

NPS Pharmaceuticals molecule N-(3-[2-chlorophenyl]propyl)-(R)-a-methyl-3-

methoxybenzylamine (NPS R-568) significantly decreases serum PTH levels, leading to 

reduction in plasma calcium, and calcium-phosphorus products in patients on hemodialysis  

(Levi et al., 2006; Lindberg, 2005).  Binding of calcimimetics such as NPS R-568 to CaSR 

cause decreases in PTH secretion (Nemeth et al., 1998), parathyroid cell proliferation  
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(Colloton et al., 2005; Wada et al., 1997) and gene expression (Levi et al., 2006).  The 

mechanisms by which calcimimetics regulate PTH secretion or affect PTH mRNA stability or 

cell proliferation have not been elucidated.  Experiments to elucidate the mechanisms involved in 

the regulation of iCa2+ concentration in the plasma or serum have been facilitated by using 

synthetic molecules that are either calcimimetic or calcilytic, which are positive, and negative 

allosteric modulators of CaSR, respectively. Some calcimimetics, such as NPS R-568, enhance 

the sensitivity of the CaSR for extracellular iCa2+, leading to inhibition of parathyroid hormone 

secretion in vitro.  Administration of NPS R-568 to rats decreased serum PTH level, followed by 

a decrease in serum  calcium (Fox, Lowe, Petty, & Nemeth, 1999), but did not affect CaSR in the 

kidney (E. M. Brown & Hebert, 1997; Riccardi et al., 1996).   

A calcilytic compound, such as 2-Chloro-6-[(2R)-3-[[1,1-dimethyl-2-(2-naphthalenyl) 

ethyl] amino]-2-hydroxypropoxy]-benzonitrile (NPS 2143), is a selective positive allosteric 

modulator of CaSR that stimulate secretion of parathyroid hormone.  In vitro treatment of bovine 

parathyroid hormone cells with NPS 2143 stimulated the secretion of parathyroid hormone over 

a range of extracellular calcium concentrations and reversed the effects of calcimimetic 

compound NPS R-467 (analog of NPS R-568) on calcium concentration and secretion of PTH 

(Nemeth et al., 2001).    Administration of NPS 2143 to normal rats caused a four-fold increase 

in plasma PTH approximately 15 minutes post-dose, which remained elevated up to 6 hours 

post-dose.  Following increased plasma PTH, serum calcium concentration increased about 

90 minutes post-dose, peaked at 3 hours, and returned to baseline by 6 hours post-dose  

(Gowen et al., 2000).   The NPS 2143 molecule lowers the sensitivity of the CaSR to iCa2+ 

concentration, which induces adenylate cyclase  and promotes phospholipase C activation—a 

signal transduction that results in increased serum PTH (Letz et al., 2010).  Whether the increase 
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in PTH is due to increased cell proliferation, increased stability of PTH mRNA, or increased 

expression of mRNA remains to be studied.   

Recently, a pharmaceutical compound, CC-325, was synthesized for the treatment of 

Acute Myeloid Leukemia (AML). Preliminary studies have shown anti-proliferative effects in 

tumor cell lines, which are the result of cereblon-dependent ubiquitination and subsequent 

proteasomal degradation of GSPT1. This protein, also known as eRF3a, is a translation 

termination factor that binds eRF1 to mediate stop codon recognition and nascent protein release 

from the ribosome (Matyskiela et al., 2016). In-house (Bristol Myers Squibb Corporation) pilot 

studies in huCRBN KI mice and cynomolgus monkeys have revealed development of 

hypocalcemia as a side effect of the drug, that if left untreated could be life threatening.  

Analysis of the samples from huCRBN KI mice studies has revealed a decrease in parathyroid 

hormone. This suggests that the hypocalcemia associated with the administration of CC-325 may 

be due to an effect of the compound on the parathyroid gland and may impact circulating PTH 

concentration.  Elucidating the mechanism of this drug-induced hypocalcemia will be important 

for design and development of future drugs in this class of compounds.    

Purpose of this Study and Research Questions 

The purpose of this research is to investigate the effects of CC-325, a GSPT1 protein 

degrader, on parathyroid hormone synthesis and release and on iCa2+ concentration in the 

plasma. Additionally, this research is designed to investigate the effect of CC-325 on FGF23 

plasma concentration and its impact on plasma calcium concentration.   

The research questions that guide this study are: 

1- What is the mechanism that leads to drop in PTH after treatment with CC-325? 
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a. Does it affect secretion of PTH? 

b. Does it affect transcription? 

c. Does it affect translation?  

2- What is the effect of CC-325 on FGF23 plasma concentration and how does it impact plasma 

calcium concentration?   

To date, there are no published data associating degradation of GSPT1 with hypocalcemia. This 

research is the first to explore part of this mechanism in a preclinical setting.   

Hypotheses 

The objectives of this research are summarized in the four hypotheses listed below.  The 

focus of this research is to investigate the effects of GSPT1 degradation on transcription, 

translation and secretion of PTH.   Testing these hypotheses will provide information about the 

impact of GSPT-1 degradation on PTH mRNA, PTH synthesis, and PTH release from 

parathyroid and its impact on plasma calcium concentration.  This study will also investigate the 

impact of GSPT1 degradation on serum FGF23 concentration and its effect on serum calcium 

concentration.  

As described earlier, CC-325 administration to mice results in decrease in serum PTH 

and then calcium, while treatment of mice with a single dose of NPS 2143 results in significant 

increase in serum PTH and calcium.  In this study, after subacute dosing of CC-325 to huCRBN 

KI mice, followed by a single dose of NPS 2143 on the last day of study, we will collect samples 

to test the following hypotheses. The details and procedures for testing these hypotheses are 

described in method section.   

Hypothesis 1: Treatment of huCRBN KI mice with CC-325 will inhibit the synthesis of 

Parathyroid Hormone. 



www.manaraa.com

12 

H01: After 5 days of treatment with CC-325, a single dose administration of NPS 2143 

will not be able to increase the serum parathyroid hormone and iCa2+. 

HA1: After 5 days of treatment with CC-325, a single dose administration of NPS 2143 

will increase serum parathyroid hormone and iCa2+.   

Hypothesis 2: Treatment of huCRBN KI mice with CC-325 does not affect the secretion 

of parathyroid hormone from the parathyroid gland.   

H02: After 5 days of treatment with CC-325, with or without a single dose administration 

of NPS 2143, extracellular parathyroid hormone level (in serum) correlate with the 

intracellular parathyroid hormone level in parathyroid.  

HA2: After 5 days of treatment with CC-325, with or without a single dose administration 

of NPS 2143, intracellular parathyroid hormone level in parathyroid will be higher than 

serum parathyroid hormone level suggesting sequestration in parathyroid.   

Hypothesis 3: Treatment of huCRBN KI mice with CC-325 regulates parathyroid 

hormone production at transcription level. 

After treatment of mice with CC-325 for 5 days, followed by a single dose administration 

of either vehicle or NPS 2143, we will measure the level of PTH mRNA in the parathyroid.  The 

data will be used to test this hypothesis.  

H03: Treatment with CC-325 has no effect on parathyroid hormone mRNA.  

HA3: Treatment with CC-325 decreases parathyroid hormone mRNA 

Hypothesis 4: After treatment with CC-325, serum FGF23 decreases.  



www.manaraa.com

13 

Since FGF23 suppresses PTH when elevated, we are hypothesizing that when PTH is low the 

FGF23 concentration in serum will decrease.  

H04: After 5 days of treatment with CC-325, serum FGF23 concentration does not 

change.    

HA4: After 5 days of treatment with CC-325, serum FGF23 concentration decreases.     

Summary 

Hypocalcemia is a potentially life-threatening condition if left untreated. Several organs 

including, thyroid, parathyroid, kidney, bone and gastrointestinal (GI) tract are involved in 

maintaining the calcium homeostasis.  Any injury or toxicity to any of these organs can disrupt 

this homeostasis. Recently, we have discovered the impact of some pharmaceuticals, known as 

GSPT1 degraders, on parathyroid gland.  It has been shown that degradation of GSPT1 can 

reduce calcium level in the plasma.  Currently there is no published data regarding the 

mechanism of GSPT1 induced hypocalcemia in preclinical species. In-house pilot studies have 

shown that huCRBN KI mice treated with CC-325 have low levels of parathyroid hormone in 

circulation.  The proposed study is designed to investigate the mechanism by which the GSPT1 

degrader, CC-325, causes hypocalcemia.   

  



www.manaraa.com

14 

CHAPTER 2:  LITERATURE REVIEW 

Calcium 

Calcium is the fifth most prevalent cation and the fifth most common element in the 

body.  The body of an average person contains about 1 kg of calcium, which is mainly found in 

the skeleton (99%) as well as the soft tissue (1%), and to a lesser degree in extracellular fluids 

(<0.2%). In the blood, almost all of the calcium is in the plasma portion with a mean 

concentration of 2.38 mmol/L (9.5 mg/dL) in humans  (Burtis, Ashwood, Bruns, & Tietz, 2013).  

In plasma, calcium is present in three physiological states; free or ionized calcium (iCa2+), bound 

to plasma proteins, and complexed with small anions. The biologically active calcium is the 

iCa2+, which is tightly controlled by PTH and 1,25(OH)2D (Glendenning, 2013). Roughly half of 

calcium in plasma is free, the remaining is either bound to albumin or globulin or complexed 

with bicarbonate, phosphate, lactate or citrate. About 70-80% of the protein bound fraction is 

bound to albumin and lesser degree to globulin. The complexed fraction is about 10-15% of 

total plasma calcium.  The free fraction, also referred to as ionized calcium, is the diffusible 

fraction that is biologically important and is often measured for accurate diagnosis. Because 

calcium binds to the negatively charged sites of proteins, its binding is pH dependent  

(Fogh-Andersen, Bjerrum, & Siggaard-Andersen, 1993; Kragh-Hansen & Vorum, 1993).  

Albumin has about 30 binding sites for calcium; increases in pH increase the albumin-bound 

calcium (Fogh-Andersen et al., 1993). Acidosis leads to a decrease in binding, resulting in 

increased iCa2+, whereas alkalosis increases binding and results in decreased iCa2+.  In vitro data 

has shown that for every 0.1 unit change in pH, the iCa2+ changes by approximately 0.05 mmol/L 

(0.2 mg/dL) (Burtis et al., 2013; Fogh-Andersen et al., 1993). 
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 Calcium can be either intracellular or extracellular, and the skeleton serves as a reservoir 

for both, Table 1 shows the percent distribution of calcium, phosphate, and magnesium in the 

body.  Intracellular calcium plays an important role in many physiological functions, including 

hormone secretion, glycogen metabolism, muscle contraction, and cell division.  Extracellular 

calcium provides calcium ion for the maintenance of intracellular calcium, blood coagulation, 

bone mineralization, and plasma membrane potential.  The intracellular concentration of calcium 

in the cytosol is between 10-7and 10-6 mol/L which is about 1000 fold less than the extracellular 

fluid, which is 10-3 mol/L (Burtis et al., 2013; Pozzan, Rizzuto, Volpe, & Meldolesi, 1994).  

Calcium homeostasis is discussed in detail further in this literature review.  

Phosphate 

Inorganic and organic phosphate (collectively referred to as phosphorus) are present in 

plasma; however, only inorganic phosphate is measured in the plasma or serum.  An adult human 

body has about 600g of phosphorus; about 85% of the phosphorus is in the skeleton, and the rest 

in the soft tissue (Burtis et al., 2013).  Roughly 10% of the phosphate in the plasma is protein 

bound, 35% complexed with sodium, calcium, or magnesium, and 55% is free. The ratio of 

monovalent phosphate to divalent phosphate changes with blood pH.  At pH 7.4, the ratio of 

monovalent phosphate to divalent phosphate is 1:4 which decreases in acidosis and increases in 

alkalosis (Burtis et al., 2013; Yu & Lee, 1987).  The organic phosphate esters are primarily 

intracellular, whereas inorganic phosphate is in bone and extracellular fluid.   In cells, both 

organic and inorganic phosphate are present; however, most organic phosphate is in the nucleic 

acids, phospholipids, phosphoproteins and high-energy compounds involved in metabolism  

(Yu & Lee, 1987).  Plasma phosphate levels are coupled to calcium homeostasis through the 

actions of PTH. In primary and secondary hyperparathyroidism, a decrease in plasma phosphate 
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(hypophosphatemia) is observed.  In hypoparathyroidism or pseudohypoparathyroidism, 

phosphate renal tubular reabsorption is increased and plasma phosphates are elevated  

(Burtis et al., 2013).  In vitro studies have suggested that phosphate could directly affect PTH 

secretion.  Intravenous infusion of phosphate to dogs, and simultaneous infusion of calcium to 

prevent hypocalcemia, resulted in a delayed and transient increase in PTH only at very high 

concentration of phosphate (4-5 mM) in plasma (Estepa et al., 1999).  However, this study 

suggests that PTH stimulation by phosphate can be calcium independent.  Serum phosphate 

directly affects PTH synthesis by promoting the stability of PTH mRNA (Kawakami et al., 2017; 

Moallem, Kilav, Silver, & Naveh-Many, 1998).  

Magnesium 

Magnesium is the second most abundant intracellular cation and the fourth most 

prevalent cation in the body.  Of the total magnesium in the body, 53% is in the skeleton, 27% is 

intracellular compartments of muscle, and 19% in soft tissue. Plasma contains about 0.3% of the 

total body magnesium (Fawcett, Haxby, & Male, 1999).  Similar to calcium, magnesium in 

plasma is present in three different forms, ionized or diffusible, protein bound, and complexed 

with anions such as phosphate (Fawcett et al., 1999; Rude & Singer, 1981).  It is involved in 

several processes such as: gating of transmembrane calcium channels, hormone receptor binding, 

transmembrane ion flux and regulation of adenylate cyclase, neuronal activity, cardiac 

excitability, muscle contraction, and neurotransmitter release (Fawcett et al., 1999).  

Intracellularly, the majority of the magnesium is bound to negatively charged molecules and 

proteins; in the cytosol, 80% of the magnesium is bound to ATP, which is a substrate for many 

enzymes (Burtis et al., 2013; Rude & Singer, 1981; Saris, Mervaala, Karppanen, Khawaja, & 

Lewenstam, 2000).  Intracellular magnesium concentrations range from 5-20 mmol/L, with 1-5% 
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ionized. The concentration increases as the metabolic activity of the cell increases (Elin, 2010; 

Jahnen-Dechent & Ketteler, 2012). Extracellular magnesium is about 1% of the total body 

magnesium, which is primarily found in plasma. Free or ionized magnesium accounts for about 

55% of the total plasma magnesium, while 30% is bound to protein, mainly albumin, and 15% is 

complexed with phosphate, bicarbonate, citrate, sulphate, and other anions (Burtis et al., 2013; 

Fawcett et al., 1999; Jahnen-Dechent & Ketteler, 2012).  Table 2 provides details of different 

physiological states of calcium, phosphate, and magnesium in plasma.   

Magnesium deficiency has been reported in 7-11% of the hospitalized patients, and in 

many cases it co-exists with other electrolyte abnormalities such as hypocalcemia and 

hypophosphatemia (Fawcett et al., 1999; Jahnen-Dechent & Ketteler, 2012).  Similar to 

calcium, magnesium is absorbed in the gut and stored in bone minerals; excess magnesium is 

excreted by the kidney and in the feces. A common cause of magnesium deficiency is renal loss 

(Fawcett et al., 1999; Swaminathan, 2003).  Magnesium and calcium are in competition for the 

same binding sites on plasma protein molecules (Swaminathan, 2003).  Similar to calcium, 

magnesium measurement in serum does not accurately reflect the total body content of 

magnesium because only 1% of total body magnesium is present in extracellular fluids and only 

0.3% of the total magnesium is found in plasma; therefore, serum magnesium concentrations are 

poor predictors of intracellular or total body magnesium (Jahnen-Dechent & Ketteler, 2012; 

Swaminathan, 2003).  

Magnesium reabsorption in the kidneys can range from 0.5-70% of the filtered load, 

which is mainly dependent on the concentration of the magnesium in plasma, and to a lesser 

degree dependent on the concentration of hormones such as: parathyroid hormone, anti-diuretic 

hormone, and calcitonin (Jahnen-Dechent & Ketteler, 2012). Other hormones that can influence 
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the magnesium balance in the body include 1,25(OH)2D, glucagon, aldosterone, and insulin. 

Extracellular magnesium directly inhibits PTH release by stimulating the CaSR.  Magnesium is 

two-to-threefold less potent than calcium in activating the CaSR (Vetter & Lohse, 2002).  In 

parathyroid, the intracellular events that are stimulated by CaSR activation include transient 

increase in intracellular calcium, stimulation of Phospholipase A2 activity and inhibition of 

cyclic adenosine monophosphate (cAMP) accumulation.   These effects are mediated via G 

protein Gi and Gq classes and are detailed in the Calcium Sensing Receptor section and 

explained in Figure 5 (page 37). PTH stimulates magnesium reabsorption in the Loop of Henley 

and in the distal tubule by activation of adenylate cyclase (AC) and cAMP production.  This 

stimulates the paracellular uptake of magnesium and calcium reabsorption by stimulating the 

Na+, K- and 2Cl- and the K+ channels in cortical thick ascending limb of the Loop of Henle (de 

Rouffignac & Quamme, 1994; Morel, 1981; Vetter & Lohse, 2002). In the convoluted tubule 

PTH can enhance absorption of magnesium via AC activation, although the exact mechanism has 

not been elucidated (Vetter & Lohse, 2002). 

Hypomagnesemia is a term used when there is a magnesium deficiency in the blood.  

Some of the causes of hypomagnesemia include reduced intake, reduced intestinal absorption, 

increase renal loss, increased gastrointestinal loss, hyperparathyroidism and drugs such as 

cisplatin, carboplatin, and gallium nitrate (Swaminathan, 2003).  Hypocalcemia can occur 

when there is a magnesium deficiency.  One of the important factors that results in 

hypocalcemia during the hypomagnesemia is impaired release of PTH (Liamis et al., 2009; 

Swaminathan, 2003).  The acute effects of extracellular magnesium on PTH release is similar to 

calcium; however, in hypomagnesemia, there is a diminished release of PTH.  In addition to 

diminished levels of PTH, end-organ resistance to PTH and an increase in PTH catabolism 
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occurs (Jahnen-Dechent & Ketteler, 2012; Swaminathan, 2003).  The evidence suggesting that in 

hypomagnesemia there is an end-organ resistance to PTH based on the occurrence of 

hypocalcemia in the presence of normal or elevated serum PTH levels.  Administration of PTH 

to patients with hypocalcemia due to magnesium deficiency does not normalize calcium levels or 

increase the urinary excretion of phosphate or cAMP (Swaminathan, 2003).  In 

hypomagnesemia, there is also a diminished level of 1,25(OH)2D due to a decrease in 

conversion of 25 (OH)2D to 1,25(OH)2D.  There is also evidence of increased clearance of 1,25 

(OH)2D and end-organ resistance in hypomagnesemia (Risco, Traba, & de la Piedra, 1995; 

Swaminathan, 2003).   

Hypermagnesemia occurs when there is excessive administration of magnesium salts or 

magnesium-containing drugs, which has a high prevalence in patients with reduced renal 

function.  Some other causes of hypermagnesemia include lithium therapy, hypothyroidism, 

Addison’s disease, milk alkali syndrome and familial hypocalciuric hypercalcemia (Marcucci & 

Brandi, 2019; Swaminathan, 2003). 

Table 1. 

Distribution of Calcium, Phosphate, and Magnesium in The Body as a Percentage. 

Tissue Calcium Phosphate Magnesium 

Skeleton 99% 85% 55% 

Soft tissues 1% 15% 45% 

Extracellular fluid <0.2% <0.1% 1% 

Total 1000 g (25 mol) 600 g (19.4 mol) 25 g (1.0 mol) 

Note. Source: (Burtis et al., 2013) 
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Table 2. 

Physiochemical States of Calcium, Phosphate, and Magnesium in Normal Plasma. 

 Approximate Percent of Total 

State Calcium Phosphate Magnesium 

Free (ionized) 50% 55% 55% 

Protein-bound 40% 10% 30% 

Complexed 10% 35% 15% 

Total (mg/dL) 8.6-10.3 2.5-4.5 1.7-2.4 

          (mmol/L) 2.15-2.57 0.81-1.45 0.70-0.99 

Note. Source: (Burtis et al., 2013) 

Calcium Homeostasis 

Regulation of extracellular and intracellular ionized calcium is essential to life. Plasma 

iCa2+ concentration, phosphate concentration, as well as the concentrations of PTH, calcitonin, 

and 1,25(OH)2D (calcitriol) all contribute to the regulation of calcium homeostasis.  The 

synthesis and secretion of the three hormones is regulated in part by the plasma concentrations of 

calcium and phosphate. A decrease in calcium or an increase in phosphate will stimulate the 

parathyroid gland to secrete PTH. Parathyroid hormone acts directly on the kidney to increase 

renal tubular reabsorption of calcium from the glomerular filtrate, and activates vitamin D, which 

increases intestinal absorption of calcium.  Parathyroid hormone also acts directly on bones to 

stimulate the release of calcium. An increase in plasma calcium concentration will result in a 

drop in PTH secretion, which then results in a drop in plasma calcium levels. Upon a decrease in 

the plasma iCa2+ concentration and a decrease in plasma levels of 1,25(OH)2D, the cascade of 

signaling to increase PTH synthesis and secretion initiates, as illustrated in Figure 1.  Calcitonin 

is produced in parafollicular cells of the thyroid and inhibits bone resorption and reduce calcium 

reabsorption by the kidney; an increase in plasma calcium levels stimulate calcitonin release.   
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Figure 1. 

Multiorgan Mechanisms for The Regulation of Calcium Homeostasis. 

 

Note. Decrease in plasma calcium concentration results in release of PTH from parathyroid 

gland.  Release of PTH stimulates the release of calcium from bone and uptake of calcium by the 

kidney.  Additionally, PTH stimulates the activation of vitamin D in kidney, resulting in 

increased calcium uptake in the intestine.  Collectively, these mechanisms result in increase in 

plasma concentration to normal level.  Increase in plasma calcium stimulates the release of 

calcitonin from thyroid gland, inducing calcium uptake by bone and increasing renal secretion of 

calcium to reduce plasma calcium to normal level.  

Hypocalcemia 

Hypocalcemia is a potentially life-threatening condition that is defined in humans as a 

drop in total plasma calcium level below 2.12 mmol/L (8.5 mg/dl), or ionized calcium level 

below 1.17 mmol/L (4.7 mg/dl) (Liamis et al., 2009).  It is a common electrolyte imbalance in 

patients that manifests in a wide range of clinical symptoms including dyspnea, dysrhythmia, 

circumoral numbness and paresthesia spams. The symptoms associated with hypocalcemia are 

listed in Table 3 (Michels & Kelly, 2013).  The most common causes of hypocalcemia include: 

Vitamin D deficiency,  hypoparathyroidism, resistance to calcitriol or PTH, and kidney disease 
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(Fong & Khan, 2012).  Hypocalcemia has also been associated with many drugs including 

biphosphonates, cisplatin, antiepileptics, aminoglycosides, diuretics, and protein pump inhibitors 

as well as several other classes of drugs (Fong & Khan, 2012; Liamis et al., 2009). Conditions 

that can lead to hypocalcemia are listed in Table 4.  

Table 3. 

Symptoms Associated with Hypocalcemia. 

Organ System  Most common symptoms and possible diagnosis 

Cardiovascular Dyspnea, edema, palpitations, syncope 

Dysrhythmia, prolonged corrected QT interval, 

systolic dysfunction 

Neurologic Headache, impaired vision, neuropsychiatric 

symptoms  

Premature cataracts, pseudotumor cerebri 

Neuromuscular Circumoral numbness and paresthesias; cramping, 

muscle twitching, spasms; seizures  

Carpopedal spasm 

Note. Source: (Michels & Kelly, 2013) 
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Table 4. 

Conditions and Causes of Hypocalcemia. 

Hypoparathyroidism (low or inappropriately normal PTH) 

• Post thyroid or parathyroid surgery 

• Autoimmune – isolated or autoimmune polyglandular syndrome I 

• Chronic magnesium deficiency or acute hypermagnesemia 

• Developmental disorders associated with genetic variants 

• Parathyroid gland destruction (e.g., radiation, infiltration, iron or copper, metastatic disease, 

granulomatous disease) 

• Other causes (such as mitochondrial disease and maternal hyperparathyroidism) 

Vitamin D inadequacy (high PTH and low vitamin D) 

• Nutritional deficiency 

• Lack of sunlight exposure 

• Malabsorption, including celiac disease 

• Gastric bypass surgery 

• Extensive bowel surgery 

• Pancreatic insufficiency 

• Chronic kidney disease 

• End-stage liver disease and cirrhosis 

Resistance to PTH (high PTH and normal vitamin D) 

• Pseudohypoparathyroidism type 1 

• Pseudohypoparathyroidism type 2  

• Other forms of PTH resistance 

Miscellaneous 

• Drugs (e.g., bisphosphonates, denosumab, cinacalcet, cisplatin, foscarnet, anticonvulsants) 

• Hungry bone syndrome 

• Osteoblastic metastases 

• Osteopetrosis 

• Sepsis and acute and critical illnesses 

• Acute pancreatitis 

• Spurious hypocalcemia 

Note. Source: (Hakami & Khan, 2019) 
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Vitamin D in activated form and PTH play an important role in calcium homeostasis.  

Inadequate 1,25(OH)2D levels can cause up to a 50% reduction in absorption of calcium from the 

intestinal tract.  Low PTH levels in the blood reduce the extracellular calcium concentration by 

causing excessive urinary calcium excretion, a reduction in bone remodeling, and decreased 

activation of vitamin D. Although uncommon, resistance to PTH can occur, which results in an 

increase in plasma PTH concentration without an increase in calcium concentration, a condition 

called pseudohypoparathyroidism (Cooper & Gittoes, 2008; Fong & Khan, 2012).   

Drug-Induced Hypocalcemia 

Drug-related hypocalcemia is often mild and asymptomatic; however, severe 

hypocalcemia could result in adverse clinical effects.   Several medications have been associated 

with hypocalcemia; however, diagnosis of drug-induced hypocalcemia can often be missed 

because of other existing clinical conditions in the patient (Liamis et al., 2009).  Iron overload 

due to long-term blood transfusion or misuse of iron supplements can infiltrate and destroy the 

parathyroid gland, which would result in low PTH and hypocalcemia (Angelopoulos et al., 2006; 

Liamis et al., 2009). Cisplatin, aminoglycosides, and amphotericin are known to cause 

hypocalcemia secondary to hypomagnesemia.  Cisplatin treatment results in dose-dependent 

hypocalcemia.  In fact, hypocalcemia is a common toxic side effect of high-dose cisplatin 

chemotherapy, while low dose cisplatin treatment has rarely been associated with severe 

hypocalcemia (Arany & Safirstein, 2003).  Cinacalcet, a calcimimetic drug used in patients with 

renal failure to control secondary hyperparathyroidism (SHP), has been associated with 

hypocalcemia due to its ability to inhibit PTH release (Dong, 2005; I. V. Grigorieva et al., 2010).  

Secondary hyperparathyroidism occurs in renal failure when parathyroid glands become enlarged 
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and release too much PTH into plasma in response to hypocalcemia. The list of drugs or 

treatments and their associated with hypocalcemia are shown in Table 5. 

Table 5. 

Principal Causes and Underlying Mechanisms of Drug Induced Hypocalcemia. 

Drug or Treatment  Mechanism  

Gadolinium-based contrast agents: gadodiamide 

and gadoversetamide 

Pseudohypocalcemia 

Infiltration of the parathyroid gland (iron 

overload): long-term blood transfusion therapy, 

inappropriate use of iron 

Low PTH levels (hypoparathyroidism) 

Neck radiation Damage to parathyroid gland 

Cisplatin, diuretics, aminoglycosides, 

amphotericin 

Drug-induced hypomagnesemia 

Magnesium-containing antacids and laxatives, 

magnesium sulfate tocolytic therapy 

Drug-induced hypermagnesemia 

Cinacalcet Reduce PTH 

Alcohol Reduce PTH 

Calcium chelators: ethylenediaminetetraacetic 

acid (EDTA), citrate, foscarnet, hydrofluoric acid 

High PTH levels (secondary 

hyperparathyroidism) 

Phenytoin, phenobarbital, carbamazepine, 

isoniazid, theophylline, glutethimide, and 

rifampin 

Causing vitamin D deficiency or resistance 

Bisphosphonates, plicamycin, estrogens, 

calcitonin, colchicine overdose 

Inhibitors of bone resorption 

Loop diuretics Excess calcium excretion  

PTH resistance Drug-related hypomagnesemia 

Phosphate-containing enemas, drugs that cause 

tumor lysis syndrome (e.g., anticancer agents) 

Drug-induced hyperphosphatemia 

Proton pump inhibitors (PPIs) and H2-blockers Diminished calcium absorption caused by reduced 

gastric acid production 

Glucocorticoids, Strontium-89, deferasirox, 

electroconvulsive therapy, bicarbonates, 

propylthiouracil, dobutamine, calcium channel 

blockers 

Other mechanisms not fully elucidated  

Source: (Liamis et al., 2009) 
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Vitamin D 

Vitamin D is a fat-soluble vitamin that can be obtained from natural food intake, food 

supplements, or from 7-dehydrocholesterol in the epidermal layer of the skin when it is exposed 

to ultraviolet rays from sunlight. The vitamin D produced from sun exposure, or obtained from 

food and supplements is biologically inert and must undergo two enzymatic hydroxylation in the 

body to form 1,25(OH)2 D, which is referred to as calcitriol or activated vitamin D (Bikle, 2018).  

The three main steps in vitamin D metabolism include: 25-hydroxylation, 1α-hydroxylation, and 

24-hydroxylation that are all performed by cytochrome P450 mixed function oxidases  

(Bikle, 2018).   

In the first step, the liver converts 25-hydroxyvitamin D [25(OH)D], also known as calcidiol, 

from both cholecalciferol (vitamin D from the skin) and ergocalciferol (vitamin D from plants 

and supplements).  Several cytochrome P450 enzymes such as CYP27A1, CYP2R1, and 

CYP3A4 have 25-hydroxylase activity (Bikle, 2018; David Goltzman, Hendy, Karaplis,  

Kremer, & Miao, 2018).    

The second step, which forms the physiologically active 1,25-dihydroxyvitamin D 

[1,25(OH)2D], is mediated by a 1-α-Hydroxylase (CYP27B1). Although other tissues and cells 

of the immune system express CYP27B1, the kidneys are the main source of this enzyme  

(Bikle, 2018; Bikle, Patzek, & Wang, 2018; David Goltzman et al., 2018).  A third hydroxylation 

is mediated by CYP24A1, which is 24-hydroxylase, Figure 2. The 24-hydroxylase reaction 

generates biologically inactive calcitroic acid. Another hydroxylase reaction can generate 

biologically active 25(OH)D-26, 23-lactone and 1,25(OH)2D-26, 23 lactone (Bikle, 2018).  

1,25(OH)2D is the preferred substrate for CYP24A1, producing 1,24,25(OH)3 D, which has high 

affinity for VDR and is biologically active. In the kidney, PTH inhibits expression of CYP24A1 
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while it induces CYP27B1 expression (Bikle, 2018; D. Goltzman, Mannstadt, & Marcocci, 2018; 

Tebben & Kumar, 2018).  An increase in PTH stimulates the renal conversion of  

25-hydroxyvitamin D (25(OH)D to 1,25(OH)2D, which then increases intestinal calcium 

absorption. This process is believed to take several hours.  Sustained hypocalcemia and elevated 

plasma PTH also result in 1,25(OH)2D mediated release of phosphate, calcium, and FGF23 

release from bones. Fibroblast growth factor 23 causes a reduction in 1,25(OH)2D concentration 

and decreases PTH production (D. Goltzman et al., 2018).  In plasma, vitamin D and its 

metabolites are bound to a vitamin D binding protein (DBP), which is a member of the albumin 

family of proteins (D. Goltzman et al., 2018).  The synthesis and metabolism of vitamin D are 

shown in Figure 2. 

Figure 2. 

Synthesis and metabolism of vitamin D.   

 

Note. UVB light from sun exposure and intake of vitamin D are the sources of vitamin D in the 

body.  The first step of liver metabolism is by CYP2R1 in the liver, and subsequently by 

CYP27B1 in the kidney.  Stimulating (+) and inhibitory (-) factors are shown for each enzyme 

and pathway.  Stimulation of CYP24A1 enzyme take the 25(OH)D away from the CYP27B1 and 

Vitamin D3 pathway.  Modified from (D. Goltzman et al., 2018).  
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The Fibroblast Growth Factor 23 

Fibroblast growth factor 23 (FGF23) is an osteogenic phosphaturic hormone secreted 

from bone; it is a member of the FGF family of 22 genes and proteins.  Fibroblast growth factor 

23 is a phosphatonin that is secreted by osteocytes and osteoblasts in response to 

hyperphosphatemia and 1,25(OH)2D (J. Silver & Naveh-Many, 2010). Alpha-Klotho (αKlotho) 

is a single-pass transmembrane protein, which also circulates in the blood.  αKlotho  is 

predominantly expressed in renal distal convoluted tubules with less expression in proximal 

convoluted tubules, as well as in osteocytes and osteoblasts and in the parathyroid gland  

(Ben-Dov et al., 2007; Hu et al., 2010), therefore, making parathyroid gland and kidney the 

primary FGF23 target organs for calcium and phosphorus homeostasis.  Fibroblast growth factor 

receptor (FGFR) is a single-pass receptor tyrosine kinase transmembrane protein. There are four 

isoforms, FGFR1-4, and although they are ubiquitously expressed, they are differentially 

activated by different FGF ligands in complexes with heparan sulfate proteoglycan and with 

Klotho (α and β).  Since FGFR is ubiquitously expressed, the effect of FGF23 on specific tissue 

is based on the presence of αKlotho and the tertiary complex formation of FGF23/αKlotho/FRFR 

(Chen et al., 2018; Hu et al., 2019). FGF23 binding to FGFR and αKlotho in parathyroid glands 

leads to decrease of PTH gene expression and PTH secretion through activation of the MAPK 

pathway (J. Silver & Naveh-Many, 2010). FGF23 suppresses the production of 1,25(OH)2D from 

the kidney as it reduces the 1 α hydroxylation (Kawakami et al., 2017) and reduce the intestinal 

Pi absorption (Hu et al., 2019).  PTH reduces renal tubular phosphate  reabsorption by inducing 

the endocytosis of NaPi-2a and NaPi-2c in the proximal tubule, resulting in increase of urinary 

phosphate excretion (Bourgeois et al., 2013; Chen et al., 2018; Gattineni & Baum, 2012).  High 

levels of PTH can stimulate FGF23 and 1,25-(OH)2D secretion, increase in 1,25-(OH)2D 

increases intestinal phosphate absorption.  In a feedback loop mechanism, PTH stimulates 
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FGF23 production in the bone, whereas FGF23 inhibits the production of PTH  

(Chen et al., 2018; Quarles, 2012).  Inhibition of PTH production and secretion by FGF23 in 

parathyroid gland is mediated by phosphorylation of ERK1/2 as an indication of activation of 

MAPK pathway (Ben-Dov et al., 2007).    

Fibroblast growth factor 23 suppresses PTH secretion in the short term but increases 

secretion in the long term (Kawakami et al., 2017). This contrasts with calcium, which 

simulates PTH secretion in acute and chronic hypocalcemia.   Intravenous (iv) administration of 

FGF23 to rats decreases the serum PTH level at 10- and 30-minute post administration; but when 

given intraperitoneally (ip), serum PTH levels decrease at 40 minutes and 24 h post 

administration. FGF23 decreased PTH mRNA levels at 40 min following ip administration  

(J. Silver & Naveh-Many, 2010).   

In a chronic kidney disease (CKD) mouse model, plasma FGF23 increases and causes 

parathyroid cells to proliferate, leading to increase in PTH (Kawakami et al., 2017). Rats treated 

with intravenous injection of a recombinant FGF23 and FGFR inhibitor (FGFRi) (PD173074) 

under normal- and hypocalcemic condition had significant decrease in plasma intact FGF23 

(iFGF23) and increase in PTH, revealing that FGF23 binding to its receptor, FGFR has an 

inhibitory effect on PTH secretion (Mace, Gravesen, Nordholm, Olgaard, & Lewin, 2018). In the 

absence of FGFRi inhibitor, FGF23 quickly inhibited the PTH secretion, however treatment with 

FGFRi inhibited the PTH reduction.  It was also shown that, inhibition of the FGFR by itself 

significantly increased PTH levels, indicating that FGF23 play a key role in the parathyroid 

gland’s PTH secretion. When hypocalcemia with high plasma PTH was induced in rats by 

EGTA administration, injection with recombinant FGF23, with or without FGFRi, had no effect 

on serum PTH (Mace et al., 2018).  In acute hypocalcemia, when increased PTH secretion is 
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needed to restore the calcium homeostasis, the FGF23 inhibitory effect is diminished.  The 

FGF23 also effects CYP27B1, which is responsible for transforming 25OHD to 1,25(OH)2D.  

The FGF23 and 1,25(OH)2D inhibit CYP27B1, whereas PTH stimulate this enzyme. Elevated 

calcium suppresses CYP27B1 primarily via suppression of PTH; elevated phosphate suppresses 

CYP27B1 primarily by stimulating FGF23 (Bikle, 2014). 

However, to date, there is no published data on the effects and concentrations of FGF23 

in hypoparathyroidism where the plasma calcium level is also low.  

The Parathyroid Glands 

In humans, the parathyroid glands comprise four small glands located on the posterior 

part of the thyroid gland, located bilaterally or near the thyroid gland capsule. The parathyroid 

glands consist of two main cell types, chief cells, and oxyphil cells.  The chief cells synthesize, 

store and secrete PTH (Burtis et al., 2013). The CaSR located on the surface of the chief cells 

responds to low serum calcium and activates translation and secretion of PTH. Oxyphil cells, 

also known as oxyntic cells, have no recognized function.  The proportion of oxyphil cells in the 

parathyroid glands increases with age (Lofrese et al., 2019) (Fong & Khan, 2012). 

The parathyroid glands develop with the thymus from a shared organ primordium.  Both organs 

arise from the third pharyngeal pouch endoderm and surrounding neural crest cells.  

Transcriptional processes that are key to early pouch pattern and development of the parathyroid 

and thymus organ primordium are: Hoxa3, Pax1/Pax9, Eya1, Tbx1, Sox3, and Six1/Six4  

(Han et al., 2015; Tally Naveh-Many, Silver, & Kronenberg, 2020).  The parathyroid-destined 

domain can be distinguished from E10.5 (embryonic day 10.5) by the expression of the 

transcription factor Gcm2, which is necessary for parathyroid differentiation and survival  

(Liu et al., 2007). Superior and inferior parathyroid glands develop from the endoderm of the 
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third and fourth pharyngeal pouches around the sixth week of gestation in humans. Parathyroid 

glands are functional during gestation, acting to control calcium balance in the fetus (Lefrese et 

al., 2019).  The secretory product PTH is released by exocytosis at the apicolateral domain of the 

plasma membrane into the intercellular space (Quinn, Kifor, Kifor, Butters, & Brown, 2007). 

Rodent Parathyroid 

Mouse and rat parathyroid glands are derived from the third pharyngeal pouch.  The 

fourth pharyngeal pouch does not develop in these species, and as a result only one pair of glands 

is present. Because of the close embryological relationship between the thymus and parathyroid, 

ectopic parathyroid tissue can develop in the thymus or vice-versa.  Parathyroid glands are 

located at the anteriolateral position of the thyroid and are separated by a delicate strand of 

connective tissue from the thyroid gland.  In the mouse parathyroid glands only chief cells are 

present (Kittel et al., 1996).  The closely packed chief cells possess a smooth plasma membrane. 

The cytoplasm contains abundant mitochondria, free ribosomes, a well-developed Golgi 

apparatus and a rough endoplasmic reticulum.  There are small and large secretory granules 

present in mouse parathyroid cells.  The diameter of the small secretory granules is 150-200 nm, 

while the large secretory granules are about 300-600 nm in diameter.  The large secretory 

granules are believed to serve as storage granules, but there is no evidence suggesting that the 

small secretory granules have similar capability (Isono et al., 1983; Isono et al., 1985)   

Parathyroid Hormone 

Parathyroid hormone is produced by parathyroid glands and binds to its receptor in two 

main target organs, kidney and bone.  The main function of the PTH is to tightly control the 

iCa2+ concentration in the plasma, and calcium homeostasis throughout the body.  In parathyroid 

chief cells, transcription and translation of the PTH gene generates a PreproPTH, a 115- amino 
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acid peptide.  This is processed to ProPTH, a 90 amino acid peptide, and then to PTH, which is 

84 amino acids.  The intact PTH with 84 amino acids is required for biological activity, while 

truncated forms (amino acids 34-84 and 37-84) are not active and cannot bind to the PTH 

receptor. These fragments can be produced while PTH awaits secretion by the parathyroid gland, 

and to a lesser degree by proteolytic cleavage of intact PTH by Kupffer cells.  The serum half-

life of PTH is just a few minutes and under normocalcemic conditions only 20% of the 

circulating PTH is active (D. Goltzman et al., 2018; Hinson, Raven, & Chew, 2010).  Parathyroid 

hormone and vitamin D are the primary hormones that regulate bone and mineral metabolism as 

well.  

The transcription factors, GATA3, Gcm2, and MafB are transcription factors that 

regulate parathyroid development and parathyroid hormone expression.  In humans, conditions 

such as congenital hypoparathyroidism, deafness, and renal dysplasia syndrome are associated 

with GATA3 haploinsufficiency (Han et al., 2015; Tally Naveh-Many et al., 2020).  The GATA3 

+/- mice are viable and develop a normal parathyroid gland; however, hypocalcemia induced by a 

low calcium and vitamin D diet does not increase PTH and calcium levels as in WT mice, 

indicating that GATA3 plays an important role in PTH production (I. V. Grigorieva et al., 2010).   

GATA3 directly binds to Gcm2 to regulate its expression.  Upregulation of Gcm2 is 

essential for parathyroid differentiation and survival.  Mutation in the Gcm2 gene is associated 

with familial isolated hypoparathyroidism (Yamada et al., 2019).  In Gcm2 knockout mice, the 

plasma PTH concentration was too low to be detectable, indicating that Gcm2 continues to play 

an important role in parathyroid function post-development (Liu et al., 2007; T. Naveh-Many & 

Silver, 2018). 
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MafB is a leucine zinc finger transcription factor expressed in the developing parathyroid 

after E11.5 and postnatally in mice.  In Gcm2 null mice, the expression of MafB in parathyroid 

primordium is absent.  MafB has a critical role in parathyroid development, which involves 

separation from thymus and migration toward the thyroid (Morito et al., 2018).  In MafB+/- mice, 

the response to induced hypocalcemia was impaired, resulting in a minimal increase in serum 

PTH, PTH mRNA, and parathyroid cell proliferation (Kamitani-Kawamoto et al., 2011). 

In the complex of GATA3, Gcm2 and MafB, GATA3 is the most upstream, followed by 

Gcm2 then MafB, which is the most downstream. Studies have shown that these transcription 

factors are critical for parathyroid development and function and PTH gene expression  

(Han et al., 2015; Yamada et al., 2019; Yuan et al., 2014). Figure 3 shows the cascade of PTH 

production in parathyroid chief cells.  In parathyroid gland, GATA3 binds to the double-GATA-

motif within the Gcm2 promotor, activating the Gcm2 gene. GATA3, Gcm2, and MafB 

synergistically activate PTH gene expression by interacting with the ubiquitous SP1trascription 

factor regulating PTH gene expression in the parathyroid (Han et al., 2015; Hendy &  

Canaff, 2016). 
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Figure 3. 

Regulators of PTH expression and parathyroid cell proliferation. 

 

Note. Calcium, 1,25(OH)2D, the high phosphate of uremia, and FGF23 all regulate PTH 

secretion, parathyroid cell proliferation, and PTH gene expression through transcriptional and 

post-transcriptional mechanisms.  GATA3, Gcm2, and MafB form a transcriptional complex that 

mediates parathyroid specific PTH expression. Of the PTH transcription factors, GATA3 is the 

most upstream, followed by Gcm2, and then MafB.  miRNAs are necessary for the activation of 

the parathyroid gland in secondary hyperparathyroidism.   FGF23: Fibroblast growth factor 23, 

FGFR: Fibroblast growth factor receptor, 5'-UT: 5' untranslated region, 1,25(OH)2D: 1,25-

dihydroxyvitamin D3, CaSR: Calcium sending receptor, CKD: Chronic kidney disease, miRNA: 

Micro RNA. Modified from (T. Naveh-Many & Silver, 2018). 

 

Calcium Sensing Receptor 

In humans, the CaSR gene resides on chromosome 3 and at the band 3q13.3-21.  In the 

mouse and rat, the CaSR gene resides on chromosomes 11 and 16, respectively  

(Janicic et al., 1995).  The CaSR protein has been classified as a member of group II G protein 

couple receptors. The human CaSR consists of 1078 amino acid residues with 3 different 

structural regions. The regions include: an extreme N-terminus, which binds Ca2+; the 
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transmembrane domain consisting of seven helices (typical of the superfamily of GPCRs); and a 

large carboxyl terminal cytosolic domain that contains many phosphorylation consensus 

sequences to protein kinases type A (PKA), and C (PKC), as illustrated in Figure 4.  The 

carboxyl terminal domain is capable of binding to filamin A and activating mitogen-activated 

protein kinases (MAPK) (Bai, 2004; Diaz-Soto et al., 2016).   

Figure 4. 

Calcium-Sensing Receptor Dimeric structure with three domains.  

 

Note. Negatively charged binding site for Ca2+ and the calcimimetic binding sites are marked 

(A). Residues involved in both calcimimetic and calcilytic binding are shown in black.  Residues 

described play a part in calcilytic binding only are shown in orange (B). Modified from  

(Diaz-Soto et al., 2016; Saidak, Brazier, Kamel, & Mentaverri, 2009). 

Binding of calcium to the CaSR results in its activation and a decrease in plasma PTH.  

CaSR interaction with several heterotrimeric G proteins such as Gq/11, G12/13, and Gi controls the 

activity of several downstream signaling pathways. Activation of Gq/11 by CaSR activates 

phospholipase β (PLCβ), releasing inositol triphosphate (IP3) from membrane phsphoglycerides, 

which mediates the release of Ca2+ from the intracellular stores. This creates a transient increase 

in cytosolic Ca2+, which is followed by an influx of Ca2+ though activated plasma membrane 
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Ca2+ channels (Diaz-Soto et al., 2016; Kifor, Diaz, Butters, & Brown, 1997).  In the parathyroid 

gland, CaSR responds to an increase of extracellular iCa2+, by inhibiting cAMP synthesis via a 

pertussis toxin-insensitive mechanism that involves inhibition of a calcium-sensitive adenylate 

cyclase (de Jesus Ferreira et al., 1998; Diaz-Soto et al., 2016), as illustrated in Figure 5.  The 

CaSR also mediates migration, RhoA activation, and Rho kinase-dependent formation of actin 

stress fibers through G12/13 in CaSR expressing cells (Conigrave & Ward, 2013;  

Diaz-Soto et al., 2016).  Inhibition of PTH synthesis due to a high concentration of Ca2+ is 

mediated by MAPK pathway activation and cAMP decreased by inhibition of adenyl cyclase. 

Although  in vitro studies using a bovine parathyroid pseudogland system have shown that 

calcium can activate the MAP kinase pathway, the inhibition of adenylate cyclase, MEK 

pathway, p38 or addition of exogenous dibutyl-cyclic AMP had no effect on PTH mRNA  

(Ritter, Pande, Krits, Slatopolsky, & Brown, 2008).   
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Figure 5. 

Intracellular signaling pathways in calcium-sensing receptor. 

 

Note. Two mechanisms are shown; one is stimulated and the other is spontaneous, which result is 

either secretion or inhibition of PTH based on the Ca2+ concentration. Exogenous agonists, 

including neurotransmitters or hormones, can activate Gs-coupled GPCRs (A). PTH secretion 

continue when the Ca2+ concentration remains low but is promptly inhibited by Gi-dependent 

inhibition of adenylate cyclase in the presence of high Ca2+ concentration. The mechanism by 

which CaSR, preferentially binds to Gi is unknown but might depend on local protein kinase-A 

(PK-A) activation. The second mechanism (B), which is spontaneous, involves constitutive  

Gs-coupled GPCR activity and/or by autocrine/paracrine production of receptor activators. PTH 

secretion continues when the Ca2+ is low but is inhibited by high Ca2+ concentration. Source: 

Modified from (Conigrave, 2016; Diaz-Soto et al., 2016). 

In addition to calcium and magnesium, other physiological cations (e.g. spermine,  

b-amyloid peptides, cationic amino acids) and pharmacological agents (e.g. aminoglycosides) act 

as CaSR receptor agonists (Vetter & Lohse, 2002). There are two types of CaSR ligands, type I 

and type II.  Type I are orthosteric agonists and type II are allosteric modulators, which could be 

positive or negative modulators. Orthosteric agonists activate CaSR on their own, however 
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allosteric modulators bind to allosteric binding sites on the CaSR (Figure 5 (B), page 37), and 

increase the sensitivity of the CaSR to orthosteric agonists (Quinn et al., 2007).  Calcium is the 

main orthosteric agonist of CaSR with the most impactful physiological effect on CaSR; 

however, there are other divalent and trivalent cations that display CaSR agonism with various 

affinities. In general, the agonist with the higher positive charge density tends to have higher 

potency (Cheng, Geibel, & Hebert, 2004; McGehee et al., 1997). Table 6 lists the known 

orthosteric agonists and allosteric modulators of CaSR.  To date, no orthosteric antagonist of 

CaSR has been identified.   

Table 6. 

Different types of CaSR ligands. 

Agonists 

Cations High affinity: Gd3+, La3+, Eu3+, Tb3+ 

Medium affinity: Zn2+, Ni2+, Cd2+, Pb2+, Cu2+, Fe2+ 

Low affinity: Ca2+, Mg2+, Ba2+, Mn2+, Sr2+ 

Polyamines Spermine, spermidine, putrescine 

Aminoglucosides Neomycin, paromomycin, tobramycin, gentamicin, 

kanamycin 

Positive Allosteric Modulators 

Endogenous: L-amino acids Phe, Trp, Tyr, His 

Basic polipeptides: poly-L-arginine, poly-lysine, protamine, amyloid β peptide 

Synthetic phenylalkylamines calcimimetics: NPS R467, NPS R568 (cinacalcet), AMG416 

Negative Allosteric Modulators 

Endogenous: none 

Synthetic phenylalkilamines calcilytics: NPS 2143, Calbex 231 

Note. Sources: (Cheng et al., 2004; Diaz-Soto et al., 2016; McGehee et al., 1997; Ward, McLarnon, & Riccardi,   

2002) 

Calcimimetic drugs such as NPS R568 amplify the sensitivity of the CaSR to 

extracellular iCa2+ concentration (shift the concentration-response curve of Ca2+ to the left) and 

decrease PTH synthesis and secretion in a dose-dependent manner, resulting in a decrease in 
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blood iCa2+ concentration. Calcilytics drugs such as NPS 2143, shift the concentration-response 

curve of Ca2+ to the right, and increase PTH secretion, raising plasma iCa2+ concentrations and 

urinary phosphate excretion (Arey et al., 2005; Saidak et al., 2009).   

Extracellular concentration of iCa2+ does not affect the CaSR gene expression in 

parathyroid gland or kidney.  Treatment of mice with an allosteric modulator of CaSR 

suppressed plasma PTH and iCa2+ and parathyroid cell proliferation, but had no effect on the 

levels of parathyroid CaSR mRNA (Imanishi et al., 2011).  However, GATA3, Gcm2, and MafB 

transcription factors play a key role in CaSR and PTH expression (Han et al., 2015; Hendy & 

Canaff, 2016). Downregulation or absence of Gcm2, a transcription factor for parathyroid 

development and PTH production, can cause a decrease in expression of CaSR in parathyroid 

cells (Hendy & Canaff, 2016; Mizobuchi et al., 2009).  In the parathyroid gland, GATA3 

transactivates the Gcm2 gene by binding specifically to double-GATA-motif within the Gcm2 

promotor, and consequently, the GATA3 knockout mouse embryos lack Gcm2.   

In the thyroid, activation of CaSR by iCa2+ has a stimulatory effect on calcitonin secretion 

from C cells of the thyroid, resulting in inhibition of bone resorption and increase in plasma 

iCa2+ levels (Garrett et al., 1995). This contrasts with the action of iCa2+ on parathyroid hormone 

secretion.  The CaSR plays a critical role in maintaining calcium homeostasis by precise 

regulation of PTH and calcitonin release in response change in iCa2+ levels.   

G protein-coupled receptors are synthesized and exported along the secretory pathway 

from the endoplasmic reticulum (ER) to the plasma membrane immediately after cellular quality 

control check is complete.  However, CaSR, a GPCR, predominantly localizes in intracellular 

compartments and is not transferred to the cell surface immediately after the quality check is 

complete (Breitwieser, 2013, 2014; Cavanaugh, Huang, & Breitwieser, 2012; Huang, 
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Cavanaugh, & Breitwieser, 2011).   Activation of CaSR in the cell membrane by calcium or 

orthosteric agonists recruits additional CaSR to the cell surface from intracellular stores. 

Molecules including brefeldin A (blocking ER-Golgi trafficking) or tunicamycin (blocking 

glycosylation of newly synthesized CaSR) can acutely block the intracellular localization of 

CaSR (Grant, Stepanchick, Cavanaugh, & Breitwieser, 2011). Intracellular calcium is increased 

by CaSR activation, which increases the  plasma membrane CaSR for only a short time; 

additional signaling outputs are required to maintain  this increased level of CaSR in the plasma 

membrane (Breitwieser, 2014).  The proteins and signaling that contribute to the regulation and 

release of CaSR to the secretory pathway have not been identified. However, it has been shown 

that  the  carboxyl  terminus  of  CaSR  contains  binding  site(s)  that mediates ER retention  

(Breitwieser, 2014; Cavanaugh, McKenna, Stepanchick, & Breitwieser, 2010). The evolving 

model, agonist-driven insertional signaling (ADIS), describes the transverse of CaSR in the cell 

membrane.  This model suggests that the CaSR is only weakly expressed at the plasma 

membrane at low extracellular calcium. Increasing extracellular calcium and/or addition of 

orthosteric agonists leads to an increase in anterograde trafficking through the secretory pathway 

from all compartments including the ER, with no change in the constitutive endocytosis rate 

(Breitwieser, 2012, 2013; Grant et al., 2011). This is illustrated in Figure 6.  

 

 

 

 

 



www.manaraa.com

41 

Figure 6: 

Diagram showing the effect Ca2+ binding to CaSR, PTH gene expression, PTH release, and 

CaSR gene expression in parathyroid gland.   

 

Note. Increase in plasma calcium concentration inhibit PTH production and release by 

parathyroid cells.  Increase in plasma PTH results in increase of plasma 1,25(OH)2D, which has 

an inhibitory effect on PTH production but stimulated calcium sensing receptor expression on 

parathyroid cells. 

Hypoparathyroidism 

Hypoparathyroidism is a disorder in which either the parathyroid glands fail to secrete 

enough biologically active PTH, or the PTH is incapable of stimulating a biological response in 

its target organ. In both conditions, hypocalcemia and hyperphosphatemia occurs.  

Hypoparathyroidism results in a decrease in active transport of calcium from glomerular filtrate 

in the distal renal tubules. Patients with hypoparathyroidism also have low plasma 1,25(OH)2D 

concentrations (Conigrave, 2016).   

Hypoparathyroidism occurs when there is an abnormality in parathyroid gland 

development, a decrease in PTH production or its action, or damage to the parathyroid gland. 

Damage to the parathyroid gland or its blood supply may occur during thyroid or neck surgery, 

an autoimmune condition targeting the parathyroid gland, or radiation therapy to the neck area.  
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Other causes that could lead to abnormal development of parathyroid and hypoparathyroidism 

include: metabolic disorders, mineral deposition, magnesium abnormalities, or developing 

resistance to PTH action (Bandeira, Rubin, Cusano, & Bilezikian, 2018).  Persistent 

hypocalcemia with low or inappropriately normal PTH levels and hyperphosphatemia is 

diagnostic of hypoparathyroidism (Hakami & Khan, 2019). In the United States there are an 

estimated 60,000-115,000 cases of hypoparathyroidism (Powers, Joy, Ruscio, & Lagast, 2013).  

Below is the summary of the disorders causing hypoparathyroidism.   

PTH Gene Mutations:  The parathyroid gene mutations have been associated with 

impaired synthesis and secretion of parathyroid gland (Arnold et al., 1990). 

Hypoparathyroidism, Sensorineural Deafness, and Renal Dysplasia Syndrome (HDR 

Syndrome): HDR syndrome results from mutations in the GATA-binding protein 3 gene (GATA3) 

causing inadequate production of PTH (Muroya et al., 2001). 

Sanjad-Sakati Syndrome and Kenny-Caffey Type 1 Syndrome: This is caused by 

mutations in the tubulin-specific chaperone E (TBCE) gene on chromosome 1q42–q43, which 

encodes a protein involved in tubulin binding. Clinical manifestation includes congenital 

hypoparathyroidism (Sanjad, Sakati, Abu-Osba, Kaddoura, & Milner, 1991).   

Isolated Hypoparathyroidism conditions: Autosomal recessive hypoparathyroidism and  

X-linked are such disorders.  In an autosomal recessive condition, the leading cause of autosomal 

recessive isolated hypoparathyroidism is the loss of function of the glial cells missing (Gcm2) gene, 

also known as GCMB. Gcm2 is expressed predominantly in the developing parathyroid gland 

(Ding, Buckingham, & Levine, 2001).  In X-Linked hypoparathyroidism disorder, patients could 

have defect in the development of the parathyroid gland (Bowl et al., 2005).   
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Reduced Synthesis or Secretion of PTH: Autosomal Dominant Hypocalcemia (ADH): 

ADH causes reduction in PTH synthesis or secretion.  

• Type I: It is caused by an activating mutation in the CaSR gene, increasing the 

sensitivity of the receptor to calcium leading to decrease in PTH.  Renal calcium 

reabsorption is low because of mutant CaSRs in the kidney. 

• Type II: It is caused by an activating mutation in the guanine nucleotide-binding 

protein alpha 11 ( GNA11) gene that encodes the alpha subunit of the G protein G11, 

which is a key mediator of CaSR signaling leading to increased suppression of PTH 

release at even lower serum calcium levels., thus producing relative hypercalciuria, 

Renal calcium reabsorption is not affected (Lienhardt et al., 2001; Nesbit et al., 

2013).   

DiGeorge Syndrome:  DiGeorge syndrome results from the abnormal development of the 

third and fourth pharyngeal pouches resulting in parathyroid aplasia or hypoplasia.  DiGeorge 

syndrome is the leading cause of persistent hypocalcemia in newborns. Hypoparathyroidism is 

present in up to 60% of patients with DiGeorge Syndrome (Kobrynski & Sullivan, 2007).  

Autoimmune Disorder: A condition where patients develop an anti-CaSR antibody, and 

hypoparathyroidism can develop (Li et al., 1996).  

Autoimmune Polyglandular Syndrome Type I (APS I):  Autoimmune damage of the 

parathyroid glands leading to hypoparathyroidism. This syndrome results from mutations in the 

autoimmune regulator gene, which is expressed in other tissues including the thymus, pancreas, 

adrenal cortex, and lymph nodes. Approximately 50% of APS I patients with 

hypoparathyroidism  have antibodies that react with the NACHT leucine-rich-repeat protein 5 
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(NALP5), which is expressed predominantly in the cytoplasm of parathyroid chief cells 

(Alimohammadi et al., 2008) 

PTH resistance: Target organ resistance to parathyroid hormone is referred to as 

pseuohypoparathyroidism (PHP). In these patients, the target organ does not produce a biological 

response to PTH. Table 7 provides the description and classification of PHP. 

• PHP Type 1: It is caused by mutations in GNAS1, which is a gene encoding the alpha 

subunit of the stimulatory G protein coupled to the PTH receptor. These mutations lead to 

inability of this G protein to activate adenylate cyclase after binding to its receptor on 

PTH, leading to failure of signal transduction to produce an end-organ response to PTH. 

It is characterized by a series of clinical syndromes known as Albright’s hereditary 

osteodystrophy (AHO), which include subcutaneous calcifications among other 

conditions.  Biochemical findings include hypocalcemia in association with 

hyperphosphatemia, as a result of renal tubular resistance to PTH, and secondary 

hyperparathyroidism (Nakamoto, Sandstrom, Brickman, Christenson, & Van Dop, 1998). 

Related PHP disorders are: pseudo-PHP, progressive osseous heteroplasia, PHP type 1b, 

PHP type 1c (Hakami & Khan, 2019). Pseudo-PHP patients have normal serum levels of 

calcium, phosphate, and PTH (Mantovani & Elli, 2019). PHP 1b, also referred to as 

inactivating PTH/PTH-related protein signaling disorder 3 (iPPSD3), is characterized by 

renal resistance to PTH associated with resistance to the action thyroid stimulating 

hormone (TSH), in the absence of other physical abnormalities (Elli et al., 2019; 

Mantovani & Elli, 2019).   

• PHP1C/PHP1A, PPHP, and POH are all referred to as iPPSD2, they all have similar 

clinical manifestations deriving from inactivating mutations affecting Gsα coding exons 
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and include: AHO features, resistance to PTH, TSH, gonadotropins, and growth 

hormone-releasing hormone (GHRH) (Mantovani & Elli, 2019).  

• PHP Type 2: PHP type 2 cases are rare and the molecular defects that leads to this 

disease has not been fully elucidated.  Some researchers have hypothesized that PHP type 

2 maybe an acquired defect secondary to vitamin D deficiency (Mantovani, 2011).  

Patients with PHP type 2 is characterized by resistance to PTH, which manifests as high 

levels of PTH, hypocalcemia, hyperphosphatemia but absence of Albright’s hereditary 

osteodystrophy.   

Table 7. 

Description and Classification of Pseudohypoparathyroidism. 

                                                                                                                                                                                                             

Type Hormone  

Resistance 

Clinical Presentation Genetic Cause 

PHP1A PTHm TSH, 

gonadotropins, GHRH 

AHO, superficial HO Maternal LOFBNAS genetic 

variants 

PPHP No AHO, superficial HO Paternal LOF GNA genetic variants 

PHP1C PTH, TSH, 

gonadotropins, GHRH 

AHO, superficial HO Few LOF GNAS genetic variants in 

exon 13 reported 

PHP1B PTH, TSH No Primary or secondary (UPD (20) 

pat; deletions within STX16 and /or 

NESP) GNAS epigenetic defects 

Note. Other Forms of PTH Resistance.  PTH resistance has also been associated with recessive 

missense mutations in the mature PTH(1–84) sequence, resulting in resistance to PTH because of 

reduced PTH binding to its receptor (S. Lee et al., 2015). 

 

Allosteric Modulators of The Calcium Sensing Receptor 

Positive allosteric modulator of CaSR NPS R-568 

The small molecule, NPS R-568, is a phenylalkylamine compound that acts as positive 

allosteric modulator of CaSR (calcimimetic) and moves iCa2+ concentration-response curve to 

the right.  NPS R-568 potentiates the effect of circulating iCa2+ on CaSR on the parathyroid, 



www.manaraa.com

46 

leading to decreased PTH synthesis and secretion.  The hypocalcemia response to NPS R-568 is 

rapid and dose-dependent.  The site of action for NPS R-568 is parathyroid CaSR, because total 

nephrectomy did not have any effect on magnitude or kinetics of hypocalcemia in rats  

(Fox et al., 1999).  In a rat model of chronic renal insufficiency, a uremic condition results in an 

increase in PTH levels and parathyroid cell proliferation.  Treatment of uremic rats with NPS  

R-568 inhibited parathyroid cell proliferation (Wada et al., 1997). It has been shown that an 

increase in PTH mRNA in hypocalcemic rats is due to stabilization of PTH mRNA in 

parathyroid cells. Parathyroid cytosolic proteins bind to discrete elements in the rat PTH  

3'-untranslated (UTR) region and stabilize PTH transcription.  Control of PTH mRNA by iCa2+ 

does not involve an increase in the rate of PTH gene transcription. A decrease in extracellular 

iCa2+ stabilizes the PTH mRNA, resulting in an increase in PTH synthesis and secretion, and 

subsequently an increase in extracellular calcium.  An increase in extracellular calcium 

will increase degradation of PTH mRNA in parathyroid cells (Moallem et al., 1998;  

Ritter et al., 2008). The effect of NPS R-568 on PTH levels is mediated by transcriptional and 

post-transcriptional degradation of PTH mRNA, however, maximal reduction of PTH mRNA by 

NPS R-568 involves gene transcription.  This was shown in parathyroid cell cultures by 

inhibiting gene transcription with actinomycin D treatment prior to treatment with NPS R-568, 

which only partially decreased PTH mRNA reduction after treatment with NPS R-568.  

(Ritter et al., 2008).   

In a uremic rat model developed by treating rats with an adenine high-phosphorus diet for 

either 7 or 21 days, PTH mRNA levels in the parathyroid gland and PTH concentration in serum 

increase.  In rodent models, animals treated with adenine high-phosphorus diet exhibit chronic 

kidney disease with hyperphosphatemia and elevated plasma PTH levels (Levi et al., 2006).  In 
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the adenine high-phosphorus CKD model, rats that were treated for 21 days had high serum 

phosphate, PTH, PTH mRNA, and decreased in calcium and 1,25(OH)2 D on Day 21.  In that 

study, rats that were treated for either 4 or 7 days with NPS R-568 orally prior to Day 21, had 

decreases in both serum PTH and PTH mRNA when compared to a control group.   Further in 

vitro studies confirmed that the effects of NPS R-568 on PTH gene expression was 

posttranscriptional and  correlated with differences in protein-RNA binding and 

posttranscriptional modification of the trans acting factor AUF1 in the parathyroid cells  

(Levi et al., 2006). 

Negative Allosteric Modulator of CaSR NPS 2143 

Inhibitors of the CaSR, termed calcilytics,  do not activate the wild-type CaSR directly;  

instead they shift the concentration-response curve of iCa2+ and other orthosteric agonists to the 

right (Ferry et al., 1997).  As described earlier, the pharmacologic modulators of CaSR, 

including NPS 2143, target overlapping allosteric sites within the heptahelical transmembrane 

domain of CaSR (Nemeth et al., 2001; Saidak et al., 2009).  Calcilytics and calcimimetics have a 

limited range of targets therefore they are preferred as therapy over other natural CaSR ligands. 

Calcilytics, such as NPS 2143, cause increased PTH secretion, therefore causing an 

increase in plasma iCa2+ levels and urinary phosphate excretion.  The ability of calcilytics to 

increase plasma PTH concentrations has made them a potential therapy for hypoparathyroidism, 

which is common in patients with an under reactive parathyroid gland or in ADH  

(Saidak et al., 2009).  The mechanism of action of calcilytics drugs, including NPS 2143, 

involves binding to plasma membrane CaSRs and reducing its signaling capability in response to 

orthosteric agonists (Hannan et al., 2015).   The CasR undergoes dorfin-mediated ubiquitination 

and degradation by endoplasmic reticulum-associated degradation (ERAD) during biogenesis.  



www.manaraa.com

48 

Loss of function by mutations or the allosteric antagonist NPS 2143 destabilize CasR and 

increase degradation by endoplasmic reticulum-associated degradation (ERAD)  

(Huang & Breitwieser, 2007).   Pharmacological agonists and antagonists contribute to G protein 

coupled receptor folding, which causes an increase in expression and plasma membrane 

localization of the CaSR.  Changes in CaSR sensitivity influences its susceptibility to 

proteasomal degradation (Breitwieser, 2014; Huang & Breitwieser, 2007). 

The inhibitory potency of NPS 2143 is dependent on the extracellular calcium 

concentration; NPS 2143 decreases the sensitivity of the CaSR activation to extracellular Ca2+ 

(Nemeth et al., 2001). Sprague Dawley (SD) rats that were subjected to a two-hour infusion of 

NPS 2143 at the rate of 1 mg/kg/min experienced a rapid increase in plasma PTH levels that 

peaked four- to five-fold over baseline about 30 minutes post-start of infusion, and stayed high 

for the duration of infusion.  The increase in plasma PTH was associated with increased plasma 

iCa2+ levels, which increased about 90 minutes after the start of the infusion. Both PTH and 

iCa2+ returned to baseline after an hour after the end of the infusion. It is important to note that 

the change in plasma PTH preceded the change in plasma iCa2+ (Nemeth et al., 2001).  Similar 

results were seen after intraperitoneal (ip) administration of 30 mg/kg NPS 2143 to mice, while 

oral administration of NPS 2143 prolonged the duration of PTH increase to approximately four 

hours (Gowen et al., 2000; Hannan et al., 2015). 

Translation Termination Factor G1 to S phase Transition 1 (GSPT1) Degradation and 

Hypocalcemia 

Translation termination factor G1 to S phase transition 1 (GSPT1, also known as eRF3a) 

is a translation termination factor that binds eRF1 to mediate stop codon recognition and nascent 

protein release from the ribosome (Matyskiela et al., 2016).  Degradation of GSPT-1 has been 
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associated with an anti-proliferative phenotype in tumor cell lines, which is the result of 

cereblon-dependent ubiquitination and subsequent proteosomal degradation of GSPT1 

(Matyskiela et al., 2016).   

In the recent) annual meeting of American Society of Hematology (ASH, December 7, 

2019), preclinical and clinical data for CC-90009, a GSPT1 degrader, was shared.  The 

presentation titled “Clinical Activity of CC-90009, a Cereblon E3 Ligase Modulator and  

First-in-Class GSPT1 Degrader, As a Single Agent in Patients with Relapsed or Refractory 

Acute Myeloid Leukemia (R/R AML): Initial Results from a Phase I Dose-Finding Study” 

highlighted the efficacy of the CC-90009 as well as the observed adverse effects including 

hypocalcemia.  Based on the presentation, observed hypocalcemia was an on-target toxicity, 

which was reversible, manageable and did not lead to any treatment discontinuations.  The 

preclinical data points to a decrease in PTH as the most probable cause of the hypocalcemia.   

Treatment of mice and non-human primates with known GSPT1 degraders such as  

CC-325 have resulted in decreases in serum calcium (unpublished data).  Evaluation of 

parathyroid tissue by immunohistochemistry (IHC) for presence of PTH in these animals showed 

decreased levels of PTH in parathyroid tissue.  Similar decreases were observed in GATA3 and 

Gcm2 levels in parathyroid tissue when evaluated by IHC.  Although the exact mechanism of the 

hypocalcemia in GSPT1 degrader treated animals is unknown, the data from the in-house studies 

point to a decrease in PTH in the parathyroid gland as the likely cause of hypocalcemia.   

In order to explore the mechanism of hypocalcemia observed after treatment with GSPT1 

degraders, the exploratory toxicology group at Bristol Myers Squibb conducted a series of 

studies to further investigate the mechanism of cereblon modulators induce hypocalcemia.  
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Parathyroid Hormone mRNA 

Secondary hyperparathyroidism (SHP) is characterized by increased parathyroid hormone 

mRNA stability that leads to increased PTH mRNA and elevated plasma PTH levels.  Changes 

in the stabilization or destabilization factors in the cis element in the PTH mRNA 3'-untranslated 

region (UTR) are key to controlling PTH synthesis.  Two factors play a role in PTH mRNA 

stabilization or destabilization. Adenosine-uridine (AU) binding factor 1 (AUF1) is a PTH 

mRNA stabilizing protein, and K-homology splicing regulatory protein (KSPR) is a destabilizing 

protein that targets mRNAs, including PTH mRNA. The KSPR recruits the ribonuclease 

complex, the exosome, to target mRNAs including PTH mRNA for degradation  

(Nechama, Ben-Dov, Silver, & Naveh-Many, 2009). Rats fed an adenine and high-phosphorus 

diet developed uremic CKD, causing an increase in PTH mRNA and an increase in plasma iCa2+.  

Treatment with calcimimetic NPS R-568 decreased the PTH mRNA levels and plasma iCa2+ in 

rats with CKD.  Despite a decrease in PTH mRNA levels, there was no change in the PTH gene 

transcription rate between uremic rats and uremic rats treated with NPS R-568.  This result 

indicates that the decrease in PTH gene expression in uremic rats treated with NPS R-568 is 

posttranscriptional (Levi et al., 2006).  Calcimimetics have been shown to decrease serum PTH 

levels by a decrease in PTH secretion (immediate response), and PTH cell proliferation 

(intermediate effect). This suggests that calcimimetics could control serum PTH through 

decrease in gene expression.  Treatment with NPS R-568 increased VDR mRNA levels in the 

normal rat parathyroid gland in vivo and in human parathyroid glands with diffuse hyperplasia 

(Nechama et al., 2009), which corroborates that the effect of vitamin D on PTH gene expression 

is transcriptional (J. Silver et al., 1986).   
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Better understanding of the calcimimetic-mediated decrease in PTH mRNA levels can 

provide relevant information for future clinical treatment.  Parathyroid gland storage of PTH is 

very limited and can only sustain plasma PTH levels for a short time; a prolonged increase in 

plasma PTH requires PTH synthesis and parathyroid cell proliferation.  Understanding the 

mechanism of action of different drugs on PTH levels has significant importance in future drug 

development or mitigation of toxicities.   

Cereblon Modulators and Hypocalcemia 

Cereblon E3 ligase modulators (CELMoDs), such as CC-325, bind to CRBN, an E3 

ligase protein, which is a direct molecular target of compounds with anti-proliferative effects 

such as thalidomide.  CRBN is a highly conserved from plants to mammals and the mRNA for 

human, rat, and mouse is ubiquitously expressed (Lopez-Girona et al., 2012).  Mutations in 

CRBN in different species affect the efficacy, safety and sensitivity of these CELMoDs in 

commonly used animal models.  Thalidomide and several of its analogs can bind to human, 

monkey, and rabbit CRBN to exert their efficacy and toxicity in these species.  However, 

thalidomide cannot modulate mouse, rat, and hamsters cereblon.  Analysis of the structure and 

mode of binding of thalidomide and its analogs revealed that lack of activity in rodents was 

caused by two amino acid differences proximal to the thalidomide binding pocket  

(Matyskiela et al., 2018).  The cereblon surface around the substrate-binding site is the same in 

monkeys as in humans, therefore efficacy and safety of cereblon modulators are often 

investigated in monkeys.    

The Bristol Myers Squibb has constructed a transgenic mouse engineered to express 

human cereblon.  The huCRBN KI mouse has cereblon carrying a single amino acid change at 

position 391 (CRBNI391V), where isoleucine was replaced with the valine amino acid 
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counterpart of human CRBN. Homozygous huCRBN KI mice appeared normal in comparison to 

their wild-life litters mates with no apparent differences in body weight or behavior. In vivo data 

with selected CELMoDs have shown similar findings in huCRBN KI mice and monkeys; 

however, mice appear to be less sensitive to effects of CELMoDs. Therefore, higher doses of 

these compounds are needed to mimic the finding in non-human primates.   

Human Cereblon Knock-in Mice Use in Research 

Data from in-house pilot studies support the conclusion that the administration of CC-325 

to huCRBN KI but not WT mice can cause hypocalcemia.  Data from these studies also supports 

the hypothesis that hypocalcemia is driven by decrease in PTH level in parathyroid gland.  

Preliminary data suggests that the decrease in PTH level is associated with degradation of 

GSPT1.  In this research, we are investigating the mechanism by which GSPT1 degrader 

molecule (CC-325) affects PTH synthesis and secretion in parathyroid.   

Summary 

Hypocalcemia is a life-threatening condition that if not corrected can be fatal.  The 

potential causes of hypocalcemia have been discussed in this section, and regardless of the cause 

of hypocalcemia, PTH, 1,25(OH)2D, and calcitonin are important factors in maintaining normal 

physiological calcium concentration.  Hypocalcemia occurs in patients with impaired parathyroid 

function.   

The clinical manifestation of hypocalcemia vary by the severity of the  

hypoparathyroidism, which ranges from mild hypocalcemia with few symptoms, such as 

numbness and tingling in the face and hands, to severe and life-threatening symptoms including 

seizures, congestive heart failure, and bronchospasm (Hakami & Khan, 2019) 
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A decrease in PTH causes excessive renal calcium loss (and reabsorption of phosphate) 

and decreases in intestinal absorption of calcium due to reduced activation of vitamin D in the 

kidney.  PTH stimulates the renal conversion of 1, 25(OH)D to 1,25(OH)2D, which will result in 

increased intestinal calcium absorption.  Prolonged hypocalcemia will result in sustained 

increase in PTH and increases in circulating 1, 25(OH)2D mediated calcium and phosphorus 

release from the bone.  As a result, the extra cellular fluid concentration of calcium increases and 

in turn decreases the release of PTH to normal levels.  In addition, 1, 25(OH)2D can cause 

release of FGF23 from the bone, which causes the decrease production of PTH and 1,25(OH)2D 

(D. Goltzman et al., 2018).  Calcimimetics on the other hand mediate reduction in serum PTH 

levels by decreasing PTH gene expression (Levi et al., 2006). 

Many causes of hypocalcemia have been discussed here, including abnormal parathyroid 

gland development or PTH production, autoimmune causes, radiation damage to parathyroid 

gland, mineral deposition, magnesium abnormalities and more. However, as of this proposal 

defense, there has been no published data associating GSPT1 degradation with hypocalcemia.   

The goal of this research is to explore the cause of hypocalcemia associated treatment 

with GSPT1 degraders.   To investigate the cause of hypocalcemia, the impact of GSPT1 

degradation of PTH, FGF23, Ca2+, Mg2+, and phosphorus concentrations was first investigated.  

These experiments were followed by assessment of the effect of GSPT1 degradation on PTH 

production and release.   

Significance of This Research 

Understanding the mechanism of action of drugs is important in several aspects.  First, it 

will provide better understanding or the adverse effects, which could help with mitigation. 

Second, it will help with development of the next generation of drugs that could be safer and 
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more efficacious. Finally, as is the case for this research, it will help investigate the adverse 

effects of other drugs with similar clinical outcome.   

A disturbance of this complex regulatory system of calcium homeostasis can result in a 

series of compensatory changes that could lead to clinical manifestations. One of the objectives 

of this study is to better understand the mechanism of action (MOA) of CC-325 on PTH 

production and calcium homeostasis.  A better understanding of the MOA of this complex 

system will allow further investigation of the etiology and treatment of the various diseases 

associated with Ca2+ imbalance.  

This study is designed to further investigate the mechanism of hypocalcemia observed 

after administration of a selected GSPT1 degrader in huCRBN KI mice.  To date, there is little 

information about the exact mechanism of hypocalcemia observed with this class of compounds.  

In this study, we propose to test several hypotheses to elucidate the mechanism of hypocalcemia.  

Based on our initial data, development of hypocalcemia in mice treated with CC-325 is 

associated with a decrease in PTH.  Therefore, the objectives of this study are to answer 

important questions. Does treatment of mice with CC-325 inhibits the synthesis of parathyroid 

hormone? Does it affect the release of parathyroid hormone from parathyroid?     Testing of 

these hypotheses will provide further understanding of mechanism of hypocalcemia associated 

with CC-325.   

CHAPTER THREE: METHODS 

This chapter describes the research design, methodology, and analyses that will be used 

to investigate the mechanism of GSPT1 associated hypocalcemia, utilizing CC-325.  This study 

will test the following hypotheses.   
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Hypotheses 

Hypothesis 1: Treatment of huCRBN KI mice with CC-325 will inhibit the synthesis of 

Parathyroid Hormone 

H01: After 5 days of treatment with CC-325, a single dose administration of NPS 2143 

will not increase the serum parathyroid hormone and serum iCa2+. 

We have shown that treatment of mice with CC-325 for 5 days reduces serum calcium 

and PTH.  We have also shown that a negative allosteric modulator of CaSR, NPS 2143, 

can significantly increase serum PTH and calcium after a single dose administration in 

mice.  If parathyroid Chief cells in mice treated with CC-325 are still capable of 

synthesizing PTH, we should see an increase in PTH and subsequently calcium after 

single dose treatment with NPS 2143.  However, if these cells are incapable of making 

PTH, we will not see any response to NPS 2143 administration following 5-day treatment 

of CC-325.  Lack of response to NPS 2143 treatment further confirms that the 

mechanism of hypocalcemia in CC-325 treated animals is caused by decreased PTH 

levels.   

HA1: After 5 days of treatment with CC-325, a single dose administration of NPS 2143 

will increase serum parathyroid hormone and iCa2+. 

If administration of single dose of NPS 2143 following 5-days of treatment with CC-325 

can increase serum PTH and subsequently the serum calcium, we can infer that 

mechanism of hypocalcemia in CC-325 treated animals may not be directly caused by 

decrease in PTH, since PTH can be stimulated and serum PTH can be increased.   
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Hypothesis 2: Treatment of huCRBN KI mice with CC-325 does not affect the secretion of 

parathyroid hormone from the parathyroid gland.   

H02: After 5 days of treatment with CC-325, with or without a single dose administration 

of NPS 2143, serum parathyroid hormone level correlate with the intracellular 

parathyroid hormone level in parathyroid gland measured by IHC.  

When hypocalcemia occurs, parathyroid gland responds by releasing PTH into blood 

stream.  If the stored parathyroid hormone in parathyroid chief cells is insufficient to 

maintain the normal plasma calcium level, these cells start synthesizing more PTH.  This 

hypothesis test whether the decrease or increase in PTH in parathyroid cells is consistent 

with plasma PTH concentrations.  If the level of PTH in parathyroid chief cells, which is 

measure semi-quantitively, correlate with serum PTH, we can infer that chief cells are 

releasing PTH.   

HA2: After 5 days of treatment with CC-325, with or without a single dose administration 

of NPS 2143, intracellular parathyroid hormone level is higher than serum parathyroid 

hormone level. 

If there is a normal or increased level of PTH in parathyroid cells (normal is considered at 

the level of vehicle control group) but low levels in plasma, we can infer that the 

parathyroid is producing PTH but it is not being released into the blood stream.      

Hypothesis 3: Treatment of huCRBN KI mice with CC-325 regulates parathyroid hormone 

production at transcription level. 

After 5-days of treatment with CC-325, we will collect parathyroid and stain it for PTH mRNA 

(ISH staining).  
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H03: Treatment with CC-325 has no effect on PTH mRNA.  

If there is no decrease in PTH mRNA staining in parathyroid, we can infer that there is no 

change in transcription of PTH after treatment with CC-325.   

HA3: Treatment with CC-325 decreases PTH mRNA 

Decrease in PTH mRNA indicates that decrease in serum and parathyroid PTH levels is 

due to decrease synthesis of PTH mRNA.     

Hypothesis 4: After treatment with CC-325, serum FGF23 concentration decreases.  

Fibroblast growth factor 23 production is stimulated by calcium, 1,25(OH)2D, and 

phosphorus intake.  Increase in PTH causes increase in FGF23; subsequent increase in FGF23 

leads to decrease in PTH and 1,25(OH)2D and calcium.  Increase in 1,25(OH)2D level is 

necessary to correct hypocalcemia and increase FGF23. Fibroblast growth factor 23 acts on its 

receptor, the klotho–FGFR1c receptor, to decrease PTH mRNA levels and secretion.  Treatment 

with CC-325 will results in drop in PTH and plasma calcium, therefore we are hypothesizing that 

after subacute treatment with CC-325, FGF23 will decrease.   

H04: After 5 days of treatment with CC-325, serum FGF23 concentration doesn’t change, 

indicating the FGF23 does not respond to low serum PTH and iCa2+ concentration.    

After treatment of mice with CC-325 for 5 days, serum FGF23 were measured. The 

absence of a decrease in plasma FGF23 will indicate that FGF23 is not responding to a 

decrease in serum PTH and iCa2+. 

HA4: After 5 days of treatment with CC-325, serum FGF23 concentration decreases, 

indicating that FGF23 is responding to low serum PTH and iCa2+ concentration.      
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After treatment of mice with CC-325 for 5 days, serum FGF23 were measured. A 

decrease in plasma FGF23 will indicate that decrease in PTH is directly and indirectly 

causing decrease in serum FGF23 level.  

Pilot Study Design 

In brief, three groups of male huCRBN KI mice were treated with a single dose of test 

article as follow, Group 1: Vehicle, Group 2: NPS R-568, and Group 3: NPS 2143.  Each group 

of mice were bled at 0.5, 1, 2, and 4 hours postdose. Table 8 describes the details about each 

treatment group.  Each group had two cohorts; cohort 1, which were bled at 0.5 and 2 hours 

postdose, and Cohort 2, which were bled at 1 and 4 hours postdose. The measurements at 0.5, 1, 

2, and 4-hr postdose included iCa2+, PTH, Na+, K+, Cl-, which were measure using the Stat Prime 

Profile analyzer.  At terminal times points, 2 and 4-hr postdose, additional blood was collected 

and albumin, Mg2+, phosphate, and total protein were analyzed by Axcel clinical chemistry 

analyzer.  The abbreviated protocol for pilot study is listed in Appendix E.  

Table 8. 

Pilot Study Groups and Endpoints. 

Group Treatment Dose 

mg/kg 

n/timepoint Measurements at 0.5, 

1, 2, and 4-hr 

postdose 

Additional 

Measurements at 2 and 

4-hr postdose 

(Terminal) 

1 Vehicle 0 5 iCa2+, PTH, Na+, K+, 

Cl- 

Albumin, Mg2+, 

Phosphate, Total Protein 
2 NPS R-568 50 5 

3 NPS 2143 200 5 
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Main Study Design 

Experimental Animals 

Male huCRBN KI homozygous knock-in (KI) mice were obtained from Taconic and 

were randomly assigned to one of several toxicologic (Tox) assessment and Toxicokinetics (TK) 

groups.  Animals were be approximately 10-12 weeks old and weigh approximately 19 to 

27 grams at the time of group assignment. Animals were be allowed to acclimate to the 

laboratory environment for a minimum of 5 days.  Animals were fed with Harlan Teklad diet and 

water ad libitum and housed with a 12-hour light/dark cycle. Mice were manually randomized 

and assigned to each treatment group using strata-based method for weight.  Each group was 

identified with a cage card bearing the study identification number and dosing group.  Assigned 

animal numbers were written on tails using an indelible marker.  Mice assigned to each treatment 

groups were group housed up to 5 animals per cage. Animal(s) were housed individually if there 

is sign of fighting or injury. Mice were not fasted prior to necropsy.   

Test Substances 1 

Identity: CC-325 [Free base] 

Batch/Lot No.: 0000076909/S00L04 

Supplier or Source:  Bristol Myers Squibb  

Formulation:  0.5% CMC/0.25% Tween-80 in 50 mM citrate buffer pH 3 

Molecular Weight: 423.42 
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Formula Weight: 423.42 

Purity (%): 100 

Storage Conditions: The bulk powder will be stored at room temperature  

(17-27°C) protected from light. The formulated material was 

stored refrigerated protected from light. 

Handling Precautions: Per standard laboratory precautions for biologically active 

compounds and according to SDS. 

Supplier/Manufacturer: Bristol Myers Squibb 

Certificate of Analysis: A certificate of analysis or equivalent, if available, describing 

the test article characterization will be placed in the study file. 

Test Substances 2 

Identity: NPS2143 

Batch/Lot No.: 0000049663 

Supplier or Source:  Sigma-Aldrich INC.   

Formulation:  Aqueous 15% (2-Hydroxypropyl)-β-cyclodextrin (HPβCD) 

Molecular Weight: 445.38 

Formula Weight: 408.9 
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Correction Factor:  1.04 

Purity (%): ≥95% (HPLC) 

Storage Conditions: Per standard laboratory precautions for biologically active 

compounds and according to SDS. 

Handling Precautions: Sigma-Aldrich INC.   

A certificate of analysis or equivalent describing the test 

article characterization were placed in the study file and 

information included in the study report. 

Dose Selection Criteria 

There are no published data on the effects of NPS 2143 in huCRBN KI mice.  In our  

in-house pilot study (internal data), a single dose of 50 or 200 mg/kg was well tolerated for up to 

6 hours; no clinical sign of toxicity was observed in these animals. Data from this pilot study was 

the first results of the effect of NPS 2143 in huCRBN KI mice.  Our data shows that the NPS 

2143 can increase PTH and iCa2+ in these mice.  The dose of 50 mg/kg results in a 7% increase 

in iCa2+ from 0.5 to 2 hours post dose.  The dose of 200 mg/kg resulted in a 15% increase in 

iCa2+ from 0.5-4 hours postdose.  At 200 mg/kg, the increase in PTH was 48-, 18- and 8-fold 

over vehicle control group at 0.5, 2, and 4 hours postdose. An increase in phosphorus at 2-h 

postdose was seen, but phosphorus was decreased by 4-h postdose.  Similarly, an increase in 

Mg2+ was observed at 2-h postdose but returned to vehicle control level by 4-h postdose. No 

change in albumin or electrolytes was observed at the measured timepoints of 2- and 4-h 

postdose.  Therefore, the dose of 200 mg/kg was selected for this study; however, on dosing day, 
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an error in calculation resulted a dose of 120 mg/kg instead of 200 mg/kg.  All tables and graphs 

have been corrected to reflect the actual dose that was administered.    

CC-325 has been tested in male huCRBN KI mice in repeat-dose exploratory toxicity 

studies.  In another internal study mice were dosed at 15 mg/kg BID (30 mg/kg/day) or 30 mg/kg 

QD for up to 7 Days.  Both doses were tolerated up to Day 5, however, by Day 6, mild decreases 

in body weight was observed.  On Day 7, clinical signs of toxicity included hunch posture and 

pilo-erection observed in both treatment groups, therefore a dose of 30 mg/kg for longer than 5 

Days may not be tolerable. Some animals in 30 mg/kg also had decreased activity by Day 7. 

There was no mortality in the toxicological assessment groups.   

In the current study, male huCRBN KI mice were dosed with CC-325 at 15 mg/kg BID 

(30 mg/kg total daily dose).  Total daily doses of 30 mg/kg/day for up to 5 days are expected to 

be tolerated based on the timing of clinical signs of toxicity observed previously.  This study will 

focus on the mechanisms leading to hypocalcemia and hypoparathyroidism in mice treated with 

CC-325. 

Dose Preparation and Administration 

CC-325 

The oral route of administration was chosen because it is the intended human therapeutic 

route.  Dosing formulations of CC-325 was prepared from the bulk powder by mixing with the 

vehicle according to the procedure below.  Based on in-house stability data, CC-325 was stable 

in 0.5% CMC/0.25% Tween-80 in 50 mM citrate buffer pH 3 up to eight days at 4° - 8°C. 

Formulations were prepared once on Day -1 for the duration of the study.  Formulations were 

aliquoted to 9 equal volumes for 5 days of daily twice daily (BID) dosing, except Day 5, which 

was once a day (QD) in the morning. The vehicle or test article formulation was given orally 
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BID (eight hours apart) daily for up to 5 consecutive days in a dose volume of 10 mL/kg.  

Formulation was removed from refrigerator and placed at room temperature approximately 

30 minutes prior to dosing.  The required volume of vehicle or drug suspension for each animal 

was based on the most recent individual body weight. 

The vehicle and CC-325 formulation was prepared according to the instructions below. 

Preparation of 1 liter of 50 mM, pH 3.0 citrate buffer water solution: 

1. Weighed out 0.88 g of sodium hydroxide 

2. Weighed out 9.605 g of citric acid 

3. Dissolved in 1L of HPLC grade water 

4. Stir to mixed thoroughly until final solution forms. 

Vehicle 1 (0.5% CMC/0.25% Tween-80 in 50 mM citrate buffer pH 3)  

1. Placed 300 mL of 50 mM citrate buffer pH 3.0 in a 1 L beaker. 

2. Measured out 2.5 g of CMC. 

3. Slowly added CMC into 50 mM citrate buffer pH 3.0 while stirring. 

4. Added 1.25 mL of Tween-80 into the mixture while stirring. 

5. Adjusted the volume to 500 mL 

6. Stirred the vehicle very slowly overnight at room temperature until homogeneous. 

7. Adjusted the pH to 3.0 with NaOH or HCl.  

CC-325 in 0.5% CMC/0.25% Tween-80 in 50 mM citrate buffer pH 3 

1. Added 324.69 mg of CC-325 to a a homogenizing tube. 
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2. Added 216.4 mL of 0.5% CMC/0.25% Tween-80 in 50 mM citrate buffer pH 3.0 vehicle 

to homogenizing tube while vortexing. 

3. Homogenized the formulation using a Teflon pestle and mortar (Potter-Elvehjem tissue 

grinder). 

4. Sonicated the formulations for 1 minute. 

5. Final pH was recorded 

6. Vortexed the formulations prior to dosing each animal. 

NPS 2143 

The oral route of administration was chosen because in published studies  

(Fox et al., 1999; Gowen et al., 2000; Hannan et al., 2015; Nemeth et al., 2001). Formulations of 

NPS 2143 will be prepared from the bulk powder by mixing with the vehicle according to the 

procedure below.  Formulations was prepared on dosing day. The vehicle or test article 

formulation was given orally a dose volume of 5 mL/kg.  The required volume of vehicle or drug 

solution for each animal was based on the most recent individual body weight. 

The vehicle and NPS 2143 formulations were prepared according to the instructions below.   

Vehicle 2: Aqueous 15% HPβCD (100 mL preparation) 

1. Placed 15 g of HPβCD in a glass screw cap bottle. 

2. Added 90 mL of HPLC grade water. 

3. Stirred to mix thoroughly until final solution forms. 

4. QS to 100 mL  

NPS 2143 in 15% HPβCD 
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1. Added 75.00 mg of NPS 2143 to a small glass screw cap bottle. 

2. Added 3 mL of 15% HPβCD vehicle to the bottle. 

3. Vortexed for 1 minutes. 

4. Sonicated the formulations for 1 minute. 

5. Vortexed the formulations prior to dosing each animal. 

Dose levels and dose concentrations are listed in Table 9. 

Table 9. 

Drug Preparation Concentrations and Administered Doses. 

For Testing 

Hypothesis 

Group Treatment Dose 

Level 

(mg/kg) 

Total 

daily Dose 

(mg/kg) 

Target Drug 

Concentration 

Free Base 

(mg/mL) 

Formulation 

Concentration 

Salt Form 

(mg/mL) 

Toxicological Assessment Groups (Tox) 

Control Group 
1 

Vehicle 1 0 0 0 0 

Vehicle 2 0 0 0 0 

2,3 
2 

CC-325 15 30 1.5 1.5 

Vehicle 2 0 0 0 0 

Baseline 

assessment 3 
Vehicle 1 0 0 0 0 

NPS 2143 120 120 24 24.96 

1,2,3,4 
4 

CC-325 15 30 1.5 1.5 

NPS 2143 120 120 24 24.96 

Toxicokinetics Groups (TK) 

TK assessment 

only 5 
CC-325 15 30 1.5 1.5 

Vehicle 2 0 0 0 0 

TK assessment 

only 6 
Vehicle 1 0 0 0 0 

NPS 2143 120 120 24 24.96 

TK assessment 

only 7 
CC-325 15 30 1.5 1.5 

NPS 2143 120 120 24 24.96 

Note. Vehicle 1 = 0.5% CMC/0.25% Tween-80 in 50 mM citrate buffer pH 3 

          Vehicle 2 = Aqueous 15% (2-Hydroxypropyl)-β-cyclodextrin (HPβCD) 
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Formulation Analysis 

Before dosing the toxicological assessment and TK animals on Day 5, two (2) aliquot of 

200 µL were taken from the middle portion of CC-325 and NPS 2143 formulations using 

positive displacement pipetting for accurate volume. Bubbles adhering to the side of the tip were 

wiped off prior to dispensing to the tubes.  The aliquots were stored at -80º C, however the 

formulation analysis was not performed for this study because adequate exposures were 

achieved.  

Experimental Groups 

Male huCRBN KI mice were assigned to experimental groups as shown in  

 Table 10, and were treated according to the schedule below. There were seven treatment groups 

in this experiment.  In previous in-house studies, treatment with test article CC-325 resulted in 

serum calcium decrease at different dose concentrations and duration, including 15 mg/kg BID 

for 5 consecutive days of doing.  In this experiment, the dose of 15 mg/kg BID for 5 days has 

been selected; this dose is expected to induce hypocalcemia without overt toxicity.  

The test article, NPS 2143 dose was selected based on the in-house pilot study with NPS 

2143.  In that study, we dose NPS 2143 at 50 mg/kg, however, the decrease in serum calcium 

was minimal; therefore, the dose of 200 mg/kg was selected for this study. However due to a 

calculation error during formulation preparation, the formulation was prepared at 24 mg/mL or 

120 mg/kg.   

Pharmacokinetic measurement when performed in the context of toxicology study is 

referred to as Toxicokinetic.  Toxicokinetic Groups (Groups 5-7) were included in this 

experiment to measure the concentration of each test article in respective treatment groups.   
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Group 1: Animals in Group 1 were dosed with vehicle 1, 0.5% CMC/0.25% Tween-80 in 

50 mM citrate buffer pH 3, for 5 days.  On the morning of Day 5, these animals also were treated 

with vehicle 2, Aqueous 15% (2-Hydroxypropyl)-β-cyclodextrin (HPβCD).  This Group 

represented the control group for Groups, 2-4.   

Group 2: The animals were treated with CC-325 for 5 days.  This Group was designed to 

measure the effect of CC-325 in serum calcium concentration as a single agent.   On the morning 

of Day 5, the animals were also dosed with a single vehicle 2 (NPS 2143 vehicle), to account for 

any effect vehicle 2 might have in mice.   

Group 3: The animals in Group 3 were treated with NPS 2143 once. On Day 5, mice 

were treated with vehicle 1 and one hour later with NPS 2143. The single dose of NPS 2143 was 

dosed on Day 5 to keep the sample collection and analysis consistent.  Group 3 was designed to 

measure the effects of NPS 2143 as a single agent in this experiment.   

Since CC-325 and NPS 2143 had never been dosed as a combination, it is important to 

measure the effects of each test article as a single agent to compare with combination treatment.   

Group 4:  Combination treatment, test article CC-325 was dosed for 4 consecutive days at 

15 mg/kg BID, and on Day 5, CC-325 was dosed in the morning followed by a single dose of 

120 mg/kg of NPS 2143. CC-325 was expected to decrease serum calcium, while NPS 2143 was 

expected to increase the serum calcium by stimulating PTH production.  This group was 

designed to test hypotheses 1-4, while Group 1 was serving as the vehicle control and  

Groups 2-3 were to evaluate the single agent effects.   
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Table 10: 

Details of Experimental Groups. 

Group 
Animal 

Numbers 
Treatment 

Dose Level 

(mg /kg) 

Total Daily Dose 

(mg/kg) 

Dosing 

Day(s) 

Group 1 1001-1025 
Vehicle 1 0 0 1-5 

Vehicle 2 0 0 5 

Group 2 2001-2025 
CC-325 15 30 1-5 

Vehicle 2 0 0 5 

Group 3 3001-3025 
Vehicle 1 0 0 5 

NPS 2143 120 120 5 

Group 4 4001-4025 
CC-325 15 30 1-5 

NPS 2143 120 120 5 

Group 5 5001-5006 
CC-325 15 30 1-5 

Vehicle 2 0 0 5 

Group 6 6001-6006 
Vehicle 1 0 0 5 

NPS 2143 120 120 5 

Group 7 7001-7006 
CC-325 15 30 1-5 

NPS 2143 120 120 5 

Note. Vehicle 1 = 0.5% CMC/0.25% Tween-80 in 50 mM citrate buffer pH 3 

          Vehicle 2 = Aqueous 15% (2-Hydroxypropyl)-β-cyclodextrin (HPβCD) 

Treatment Descriptions 

Group 1: Animals were dosed Days 1-4 BID and in the morning of Day 5 with vehicle 1; 

one hour after vehicle 1 dose administration, vehicle 2 was dosed.  

Groups 2 and 5: Animals were dosed Days 1-4 BID and in the morning of Day 5 with 

CC-325; one hour after CC-325 dose administration, vehicle 2 was dosed. 

Groups 3 and 6: Animals were dosed with vehicle 1 on Day 5; one hour after vehicle 1 

administration, NPS 2143 was dosed.  

Groups 4 and 7: Animals were dosed Days 1-4 BID and in the morning of Day 5 with 

CC-325; one hour after CC-325 administration, NPS 2143 was dosed.  Predose collection was 

prior to CC-325 administration for Group 7. 
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Table 11 below provides the schedule of treatment and collection time; all samples were 

collected at necropsy.  

Table 11. 

Schedule of Blood and Tissue Collection from Toxicological Assessment Groups. 

Treatment 

Group 

0-hr* 

Day 5 

2-hr postdose 

Day 5** 

4-hr postdose 

Day 5** 

6-hr postdose 

Day 5** 

24-hr postdose  

Day 5** 

Group 1 1001-1005 1006-1010 1011-1015 1016-1020 1021-1025 

Group 2 2001-2005 2006-2010 2011-2015 2016-2020 2021-2025 

Group 3 3001-3005 3006-3010 3011-3015 3016-3020 3021-3025 

Group 4 4001-4005 4006-4010 4011-4015 4016-4020 4021-4025 

n 20 20 20 20 20 

Note. All timepoints were terminal, thyroid/parathyroid and kidney were collected from all animals. *= Post CC-325   

dose and pre NPS 2143 dose on Day 5; **= Post NPS 2143 dose. 

Measurement Procedures 

Clinical observations 

All animals were observed for clinical signs pre-dose and approximately 1 hour after the 

end of each oral administration on dosing day and prior to necropsy.  All observations were 

recorded directly into electronic data capturing system.  

Body weights 

Body weights of all animals were recorded once prior to initial dosing and daily during 

the dosing days.  

Clinical laboratory tests 

Serum chemistry parameters were evaluated in all surviving animals on scheduled and 

unscheduled necropsy.  The method for each blood or serum analysis is described in Table 12.  
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Serum Chemistry 

At necropsy, 100 µL of whole blood was collected via retro-orbital bleeding into a 

capillary tube containing Li-heparin for iCa2+, Na+, K+, pH and Cl- measurement.   

At necropsy, additional 600 µL of blood was collected in a gold top tube with serum 

separator.   Serum was separated within 60 minutes of collection and aliquoted as described 

below detail of each methodology is described in Appendices A and B.  

Aliquot 1: 75 µL of serum for PTH  

Aliquot 2: 75 µL of serum for FGF23  

Aliquot 3: 100 µL for serum chemistry panel 

Aliquot 4: Backup sample 

Table 12: 

Blood/Serum Chemical Analyses Performed and Methods of Each Analysis. 

Analyte Analytical Method Full Detail in Appendix 

iCa2+ 

Na+ 

K+ 

Cl- 

pH 

Ion-Selective Electrode (ISE) 

A 

Ca2+ 

Mg2+ 

Phosphate 

Albumin 

Total Protein 

Colorimetric 

 

B 

FGF23 ELISA C 

Parathyroid Hormone ELISA D 



www.manaraa.com

71 

Serum Chemistry Panel (Axcel Analyzer) 

On sample analysis day, all samples were thawed on wet ice and transferred to prelabeled 

sample cup for analysis.  Calibration and quality control were performed for the assays on the 

Axcel clinical chemistry analyzer.   Upon verification and acceptance of control results, serum 

samples were loaded and run for the selected analytes listed in Table 13.  All serum chemistry 

samples were analyzed in the same run and on the same day.   

Table 13: 

Serum Chemistry Panel on Axcel Analyzer. 

Serum Samples Analyzer Parameters 

All samples from Groups 

1-4 
Axcel 

Albumin, Calcium, Phosphate, Magnesium, Total 

protein, Globulin1 

Note. 1 = Calculated 

 

Toxicokinetics 

Toxicokinetics provided the data related to exposure of mice to each test article.   There 

were 3 toxicokinetic groups in this study.  Toxicokinetic Groups 5, 6, and 7 were designed to 

measure the concentration of CC-325, NPS 2143, and combination of CC-325 and NPS 2143 in 

mice, respectively.  It was important to evaluate whether the concentration of CC-325 had an 

effect on concentration of NPS 2143 or vice versa. Toxicokinetic measurements were also 

important, particularly when there was unexpected pharmacokinetics effects, which could be due 

to drug-drug interaction. 

Blood samples (approximately 0.15 mL) were collected manually by retro-orbital 

bleeding from TK animals at 0, 1.5, 3, 5, 9, and 24 hours post CC-325 treatment in Groups 5 and 

7, the same timepoints were collected from NPS 2143 only treatment group, Group 6 on Day 5. 
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Dosing the CC-325 on the morning of Day 5 triggered the timepoints for all TK groups.  The 

NPS 2143 was dosed exactly 1-hr post CC-325 dose.  Table 14 below shows the bleeding 

assignment for each TK animal.   

Table 14: 

Assigned Timepoints for Toxicokinetic Assessment Animals. 

TK Day 5 Time Points (hour) 

Group Treatment Animal # 0 1.5 3 5 9 24 

5 
CC-325  

15 mg/kg 

5001-5003 √  √  Terminal  

5004-5006  √  √  Terminal 

6 
NPS 2143       

200 mg/kg 

6001-6003 √  √  Terminal  

6004-6006  √  √  Terminal 

7 

CC-325  

15 mg/kg 

NPS 2143 

200 mg/kg 

7001-7003 √  √  Terminal  

7004-7006  √  √  Terminal 

Blood samples were collected into a chilled tube containing K2EDTA as an 

anticoagulant.  Samples were placed on wet ice and were protected from light until they were 

spun down at 3000 rpm for 8 minutes to separate plasma.  Within 0.5-hr of whole blood 

collection, plasma was separated by centrifugation at 2-8°C.   The TK samples for each 

timepoint were aliquoted according to Table 15.  

Table 15. 

Serum Aliquoting For Toxicokinetics Analysis. 

Group Test Article Aliquot 1 Aliquot 2 

5 CC-325 A A 

6 NPS 2143 B B 

7 
CC-325 A ---- 

NPS 2143 ---- B 

Note. A: Stabilized with Sorenson’s buffer.  B: Neat plasma 
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To stabilize with Sorenson’s buffer after plasma separation, an accurate volume of 

plasma was transferred to a cryovial and stabilized with an equal volume (1:1) of 25 mM 

Sorenson’s buffer (pH 1.5) and were mixed by vortexing.   

All sample were frozen within 1 hour of whole blood collection in a freezer set to 

maintain -80°C.  Plasma samples were stored frozen at ≤ -80°C until submitted to the drug 

metabolism and pharmacokinetics (DMPK) Department, Bristol Myers Squibb, San Diego, CA.  

Plasma samples were analyzed for concentration of CC-325 and NPS 2143 by an LC-MS/MS 

method.  Maximum concentration (Cmax), Time of maximum concentration (Tmax) and area under 

the concentration-time curve (AUC) were calculated.  

Preparation of Sorenson’s buffer: 

Buffer A: 2 M Citric Acid in H2O 

To prepare 25 mL of 2 M citric acid solution in H2O, dissolve 10.5 g of citric acid 

monohydrate (MW: 210.14) into 25 mL of purified H2O.  Mixed well and sonicated for 

approximately 5 minutes and stored solution at 2-8 °C. 

Buffer B: 0.1 M Sodium Citrate Tribasic Dihydrate 

Exactly 1.47 g of sodium citrate tribasic dihydrate (MW: 294.0) was dissolved into 50 

mL of deionized H2O.  Sonicated for 1 minute and stored at room temperature. 

Preparation of Sorenson’s Citrate Buffer pH 1.5 

Exactly 580 mL of deionized H2O was added to 7.0 mL of Buffer A, 10.5 mL of Buffer 

B, and 2.1 mL of concentrated hydrochloric acid (12 M). The pH was adjusted to 1.5 with HCl.  

Mixed well and stored at 2-8 °C 
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Euthanasia 

 All animals were anesthetized with isoflurane, blood was collected and then mice were 

sacrificed via cervical dislocation.  

Pathology 

Pathology evaluation consisting of gross findings and tissue collections were performed 

at scheduled necropsy.  

Histopathology 

The list of tissues that were collected at necropsy for microscopic, IHC, and ISH 

examination are listed in Table 16.  

Table 16. 

Necropsy Tissue Collection List 

Thyroid/parathyroid 

Kidneys 

Tissues were fixed in 10% buffered formalin. Thyroid/parathyroid gland was sectioned 

and stained with hematoxylin and eosin and examined microscopically. Kidneys were blocked 

and save for possible future analysis; however, no analysis was performed on the kidneys.   

Hematoxylin & Eosin (H&E) Staining 

 Collected wet tissues were fixed in 10% neutral buffered formalin (NBF) and shipped to 

Experimental Pathology Laboratory (EPL). At EPL, the fixed wet tissues were either trimmed to 

< 0.5 cm or submitted whole as received (e.g., thyroid/parathyroid) into embedding cassettes and 

then transferred to 10% NBF until processing. All tissues were placed on a Tissue-Tek VIP 

processor and processed to paraffin using EPL’s standard program for small animal tissues. 

Tissues were embedded into paraffin blocks using the Tissue-Tek embedding center. Tissues 

then were sectioned at 4 microns and mounted onto C&A Scientific Premiere slides in a water 
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(tap) bath.  H&E staining was performed using a Hacker Linear Stainer, and slides were 

coverslipped using a Hacker Coverslipper. 

Immunohistochemistry  

 Immunohistochemistry analysis of GSTP1 and PTH in the parathyroid glands were 

performed on the tissues collected at scheduled necropsy.   

 Immunohistochemistry (IHC) was performed on the Bond-III automated slide Stainer 

(Leica Microsystems, Buffalo Grove, Illinois) using the Bond Polymer Refine Detection system 

(Leica Microsystems, DS9800). Formalin fixed paraffin embedded (FFPE) tissues were 

sectioned at four-micron thickness and deparaffinized at 72°C on the Bond instrument. Antigen 

retrieval was performed with Epitope Retrieval 2 (ER2, pH 9.0) for 20 min at 100°C.  Besides 

antigen pretreatment, all other staining procedures were conducted at room temperature. The 

slides were first blocked with Peroxide Block for 5 minutes, and then incubated with primary 

antibodies for 15 min. Post Primary and horseradish peroxidase (HRP) labeled Polymer were 

incubated at the instrument’s default conditions using the Refine Detection System. Antigen-

antibody complex was visualized with hydrogen peroxide substrate and diaminobenzidine 

tetrahydrochloride (DAB) chromogen for 10 min. Slides were then counterstained with 

hematoxylin for 5 min, dehydrated and coverslipped by the Tissue-Tek Film Automated 

Coverslipper. 

In Situ hybridization  

 In situ hybridization was performed for PTH mRNA in parathyroid gland. A fully 

automated ISH assay was performed on Leica BOND RX IHC & ISH Stainer with the 

RNAscope® 2.5 LSx Reagent Kit-RED (ACD, cat# 322750). Formalin fixed paraffin embedded 

(FFPE) rabbit embryos were sectioned at four micron thickness, baked at 60°C for 1 hour and 
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then deparaffinized in Dewax solution at 72°C. Antigen retrieval was performed in RNAscope 

2.5 LSx Target Retrieval for 15 min at 95°C, followed by RNAscope 2.5 LSx Enzyme treatment 

for 15 min at room temperature. Custom-designed target probes was applied on the slides and 

hybridized at 42°C for 2 hours. Specific signals were then amplified using the default procedures 

of ACD ISH protocol. Slides were then rinsed in tap water and baked at 60°C oven for 20 min or 

until dry, and coverslipped using Tissue-Tek Film Automated Coverslipper. 

Statistical Analysis 

Statistical analysis of quantitative clinical laboratory data was conducted by data 

capturing and analysis system. In this experiment, for analysis of variance, a Two-way ANOVA 

was performed followed by Dunnett’s multiple comparison test with a single pooled variance as 

post hoc analysis.  Cochran and Cox Test was performed for nonparametric data.  

Analytical Methods and Instrumentation 

Table 17 lists the analytical method and the analyzer for each analyte measured in this 

experiment.  
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Table 17. 

Description of Each Analytical Method and Corresponding Analyzer. 

Analyte Analytical Method Analyzer Manufacturer 

iCa2+ 

Na+ 

K+ 

Cl- 

pH 

Ion-Selective Electrode 

(ISE) 

Stat Profile PRIME 

CCS Analyzer  

Nova biomedical 

Ca2+ 

Mg2+ 

Phosphate 

Albumin 

Total Protein 

Colorimetric 

 

Axcel Alfa Wassermann 

Parathyroid Hormone ELISA N/A Quidel Biomedical 

FGF23   Quidel Biomedical 

 

Image analysis: 

After pathologist review and QC, slides were scanned using Aperio AT2 scanner (Leica 

Microsystems) at 20x for IHC stained slides or 40x for ISH stained slides. Images were sorted in 

Halolink and parathyroid of each sample was manually annotated with exclusion of the folding 

regions. Total area measurement and number of positive cells for each marker were digitally 

analyzed and H-scores were calculated using HALO software (Indica Lab). Final scores range 

for IHC was from 0 to 300, and for ISH from 0 to 400.  H-scores were the sum of the products of 

percent of positively stained cells and intensity of staining to account for 100% of the cells 

analyzed [H-score = (% at 1+) X 1 + (% at 2+) X 2 + (% at 3+) X 3]. 

Protocol Deviation:  

This experiment was conducted according to the method described above, however, there 

was one deviation in this experiment, which was the unintentional change in NPS 2143 dose 

from 200 mg/kg to 120 mg/kg.  This deviation was due to miscalculation during the formulation 
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preparation; the actual administered dose was 120 mg/kg.  The impact of this deviation was 

minimal because the elevation in serum PTH in mice in this experiment was even higher than the 

increase in serum PTH in mice in the pilot study, which used the dose of 200 mg/kg.  

A detailed schedule of dose administration for all treatment groups is listed in Table 18.  

The vehicle and test article CC-325 were administered for four consecutive days, on Day 5,  

CC-325 was administered first (Group 2 and 4) and exactly 1 hour later NPS 2143 was 

administered (Group 3 and 4).  

Table 18. 

Schedule of Dosing for All Treatment Groups. 

  Group 1 Group 2 Group 3 Group 4 

Treatment Time* Vehicle CC-325 NPS 2143 CC-325 + NPS 2143 

Dose 

mg/mL 
 0 30 mg/kg/day 

120 

mg/kg/day 

30 mg/kg/day CC-325 

120 mg/kg/day NPS 2143 

Treatment 

Day 1 QD am BID ND BID CC-325 

Day 2 QD am BID ND BID CC-325 

Day 3 QD am BID ND BID CC-325 

Day 4 QD am BID ND BID CC-325 

Day 5 QD am QD am only QD am 

QD am CC-325 

One hour later 

NPS 2143 was dosed. 

Note. * = Time is based on the NPS 2143 dose, QD = Once a day; am = morning; BID = twice a day; ND = Not  

                Dosed 
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CHAPTER FOUR: RESULTS 

Prior to conducting the main study to test the hypotheses, a pilot study was conducted.  

The purpose of the pilot study was twofold, first to select the appropriate dose of NPS 2143 for 

the main study and second, measure the range of iCa2+ and PTH response to a potent positive 

(NPS 2143) and negative (NPS R-568) allosteric modulator of CaSR.  The abbreviated protocol 

for the pilot study is listed in Appendix E.  Only the pilot data relevant to this dissertation is 

discussed in this section.   

In Group 2, treatment with NPS R-568 resulted in significant decrease in iCa2+ and PTH 

during the 1-, 2- and 4-hr time points. Changes in electrolytes and total protein were minimal and 

not biologically relevant. At 4-hr postdose, minimal decrease in magnesium and moderate 

increase in phosphate were observed, which were consistent with moderate decrease in iCa2+ 

(Figure 7, Table 19 and Table 20).  

In Group 3, treatment with NPS 2143 resulted in significant increase in iCa2+ and PTH, 

which started at 1-hr postdose and lasted until the last collection at 4-hr postdose. At 2-hr 

postdose, a minimal increase in magnesium was observed, a decrease in phosphate was observed 

at 4-hr post dose. These changes were consistent with moderate increase in iCa2+ during this 

period (Figure 7 & Figure 8, Table 19 and Table 20). 

As detailed in Chapter 2, treatment with NPS 2143 causes a decrease in sensitivity of 

CaSR, which results in increase of serum calcium by increasing PTH.  In Group 3, NPS 2143 

treatment caused significant increases in PTH and iCa2+ at 1-, 2-, and 4-hr postdose when 

compared with vehicle control (Figure 7, Figure 8, Table 19 and Table 20).  In this group, PTH 

peaked at 2-hr postdose while iCa2+ peaked at 4-hr postdose, indicating that an increase in PTH 

caused an increase in iCa2+ and a decrease in PTH at 4-hr will likely result in decrease in iCa2+ at 



www.manaraa.com

80 

timepoints beyond 4 hours.  The concentrations of iCa2+ and its corresponding serum PTH for 

each timepoint is shown in Figure 9.  Based on these data, the dose of 200 mg/kg and timepoints 

of 0, 2, 4, 6, and 24-hr postdose were selected for the main study. 

Figure 7. 

Mean (± SD) iCa2+ in huCRBN KI mice treated with vehicle, NPS R-568, or NPS 2143. 
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Figure 8. 

Mean (± SD) PTH in huCRBN KI mice treated with vehicle, NPS R-568, or NPS 2143. 
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Figure 9. 

Mean (± SD) iCa2+ in relation to PTH in huCRBN KI mice treated with vehicle, NPS R-568, or 

NPS 2143.  
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Table 19. 

Serum Chemistry Results from Stat Prime Profile for All Treatment Groups. 

Analyte Time 
Group 1 Group 2 Group 3 

Vehicle NPS R-568 NPS 2143 

iCa2+ 

(mg/dL) 

0.5-hr 5.01 4.96 5.13 

1-hr 5.14 4.55**** 5.46* 

2-hr 5.03 4.58** 5.44** 

4-hr 4.94 4.07**** 5.91**** 

PTH 

(pg/mL) 

0.5-hr 14.34 35.74 673.80**** 

1-hr 23.84 14.66 894.10**** 

2-hr 53.81 24.51 985.90**** 

4-hr 86.55 39.92 679.80*** 

Na+ 

(mmol/L) 

0.5-hr 143.4 145.8** 145.2* 

1-hr 142.8 144.2 145.5** 

2-hr 142.2 141.3 143.6 

4-hr 146.4 141.8**** 146.2 

K+ 

(mmol/L) 

0.5-hr 4.77 3.92** 4.53 

1-hr 4.71 4.60 4.50 

2-hr 4.54 4.52 4.77 

4-hr 4.80 5.14 4.83 

Cl- 

(mmol/L) 

0.5-hr 110.4 112.0* 110.8 

1-hr 112.2 111.4 110.4* 

2-hr 110.6 109.2* 109.6 

4-hr 112.0 110.2 110.8 

Note. * = p≤ 0.05; ** = p≤ 0.01; *** = p≤ 0.001; **** = p≤ 0.0001 
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Table 20. 

Whole Blood Chemistry Data from Stat Profile Prime for All Treatment Groups. 

Analyte Time 
Group 1 Group 2 Group 3 

Vehicle CC-325 NPS 2143 

Albumin 

(g/dL) 

2-hr 2.92 2.96 2.80 

4-hr 2.98 2.96 2.90 

Mg2+ 

(mg/dL) 

2-hr 2.82 2.92 3.28* 

4-hr 2.90 2.42* 2.88 

Phosphate 

(mg/dL) 

2-hr 7.56 8.04 11.24**** 

4-hr 9.24 12.16*** 7.72 

Total Protein 

(g/dL) 

2-hr 4.36 4.68* 4.46 

4-hr 4.64 4.60 4.50 

Note. * = p≤ 0.05; ** = p≤ 0.01; *** = p≤ 0.001; **** = p≤ 0.0001 

Interference studies for further assay validation 

In order to evaluate the effect of CC-325 and NPS 2143 on the quantification of PTH and 

FGF23 by ELISA assays, each ELISA assay was evaluated for such interference.  Serum from 

naïve mice was pooled and spiked with different concentration of CC-325 or NPS 2143.  An 

ELISA run for each analyte was performed.   The detail of this interference study is described 

below.  

ELISA kits 

The lot and expiration date for PTH and FGF23 ELISA kits are listed in Table 21 below, 

and these lots were used for all PTH and FGF23 sample analysis in this dissertation. Since the 

control values for each kit were lot specific, the lot numbers were recorded carefully. The 

manufacturer of both kits was Quidel Corporation.   
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Table 21. 

Control Values for PTH and FGF23 ELISA kits. 

 PTH  FGF23 

Reference No. 60-2305 60-6800 

Lot No.  161535 163846 

Expiration Date 09/30/2020 11/11/2020 

Control I Range 46-76 58-97 

Control II Range 140-234 166-277 

 

Sample preparation 

Blood from naïve huCRBN KI mice was collected and serum was separated and pooled.  

Since the maximum concentration (Cmax) of test articles in huCRBN KI mice was not known, the 

highest concentration of 20 µM was selected for each test article.  To prepare the highest 

concentration of CC-325 stock solution, 1.693 mg of CC-325 was spiked into 5 mL of DMSO, 

and then vortexed for 3 minutes to dissolve the compound.  To prepare the highest concentration 

of NPS 2143 stock solution, 1.709 mg of NPS 2143 was spiked into 5 ml of DMSO, and then 

also vortexed for 3 minutes to dissolve the compound.  To prepare the serial dilutions for the 

interference assay, 1 µL of stock solution was added to 39 µL of naïve mouse serum, which 

resulted in 8468.4 ng/mL of CC-325 (20 µM) or 8547.6 ng/mL of NPS 2143 (20 µM) in 

respective vials. A 1:2 serial dilution of DMSO stock was performed and 1 µL of each dilution 

was added to 39 µL of the naïve mouse serum to obtain the concentrations listed in Table 22, 

below.   
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Table 22. 

Parathyroid Hormone ELISA Plate Format for CC-325 and NPS 2143 Interference Testing. 

 Column 1 & 2 Column 3 & 4 Column 5 & 6 

A Blank N-serum N-serum 

B Standard 1 N-serum + DMSO N-serum + DMSO 

C Standard 2 N-serum 20 µM CC-325 N-serum 20 µM NPS 2143 

D Standard 3 N-serum 10 µM CC-325 N-serum 10 µM NPS 2143 

E Standard 4 N-serum 5 µM CC-325 N-serum 5 µM NPS 2143 

F standard 5 N-serum 2.5 µM CC-325 N-serum 2.5 µM NPS 2143 

G Control 1 N-serum 1.25 µM CC-325 N-serum 1.25 µM NPS 2143 

H Control 2 N-serum 0.6125 µM CC-325 N-serum 0.6125 µM NPS 2143 

Note. N-serum = naïve serum.  

 

PTH assay 

Plate setup and PTH assay data are shown in Table 22 and Table 23, respectively.  A 

standard curve was prepared to measure the controls and unknow values, Figure 10.  

Both control I and II were within the manufacturer established range. To measure the impact of 

DMSO on the PTH assay, data from wells with naïve serum + DMSO (B3-4) were compared 

with wells with naïve serum only in A3-4.  Similar calculation was done for FGF23 column.  

(B5-6 and A5-6).  The DMSO had a negative effect on the concentration of PTH and FGF23 of 

above 12-14%, as shown in Table 23.  To further measure the impact of test articles on PTH 

assay, the results from each well was compared with the naïve serum + DMSO well.   Percent 

changes for each concentration are listed in Table 23. 
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Figure 10. 

Standard curve for PTH assay 

 

 

Table 23. 

The PTH ELISA Results for CC-325 and NPS 2143 Interference Testing. 

 Mean Value 

Well 1 & 2 

Mean Value 

Well 3 & 4 

Mean Value 

Well 5 & 6 

A Blank 46 41.778 

B Standard 40 (-13.6)1 37 (-12.2)1 

C Standard 36 (-8.5)2 35 (-4.9)2 

D Standard 37 (-6.6)2 35 (-4.4)2 

E Standard 37 (-5.5)2 35 (-4.9)2 

F Standard 38 (-3.1)2 36 (-1.1)2 

G 66 42(7.1)2 39 (5.1)2 

H 175 39 (-2.2)2 35 (-4.6)2 

Note. ( ) indicates percent change; 1= percent change from N-serum; 2 = percent change from N-serum + DMSO. 

Control I range: 46-76; Control range II: 140-234.   

The effect of CC-325 on PTH assay was dose dependent, with the maximum and minimum 

decreases in PTH concentrations observed at the highest and lowest concentration of CC-325, 

respectively, Figure 11.  The 1.25 µM concentration of CC-325 caused an increase of 5% in 

y = 0.0018x - 0.0328
R² = 0.9977

-0.2

0

0.2

0.4

0.6

0.8

1

1.2

1.4

1.6

0 100 200 300 400 500 600 700 800 900

C
o

rr
ec

te
d

 A
b

so
rb

ac
e 

4
5

0

PTH  1-84 Concentration (pg/mL)

PTH 1-84 Standard Curve



www.manaraa.com

87 

PTH, and overall, the concentrations of ≤ 2.5 µM had minimal impact on measuring serum PTH 

measurement.  Based on the information in package insert the inter-assay coefficient of variation 

is 5.7% for low concentrations (60 pg/mL) and 5.4% for high concentrations (209 pg/mL).   

The effect of NPS 2143 on PTH assay was not dose dependent and maximum decrease in PTH 

concentration was limited to < 5%, which was measured at 0.612, 5.0, 10, and 20.0 pg/mL.  An 

increase of 5% in concentration of PTH was observed at 1.25 µM, Figure 11.  The inconsistency 

in direction and magnitude of change at concentrations of ≤ 2.5 µM made it difficult to assess the 

impact of NPS 2143 on PTH measurement at these low concentrations.   However, the overall 

data suggests the impact of NPS 2143 in PTH concentration is within the established coefficient 

of variation.   

Figure 11. 

Percent change in serum PTH measurement from target value (naïve serum) due to CC-325 (A) 

and NPS 2143 (B) concentrations in serum. 
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FGF23 assay 

Plate setup for FGF23 assay is shown in Table 24.  A standard curve was made to 

measure the controls and unknow values, Figure 12.  

Table 24. 

Fibroblast Growth Factor-23 ELISA Plate Format for CC-325 and NPS 2143 Interference 

Testing. 

 Well 1 & 2 Well 3 & 4 Well 5 & 6 

A Blank N-serum * 

B Standard 1 N-serum + DMSO * 

C Standard 2 N-serum 20 µM CC-325 N-serum 20 µM NPS 2143 

D Standard 3 N-serum 10 µM CC-325 N-serum 10 µM NPS 2143 

E Standard 4 N-serum 5 µM CC-325 N-serum 5 µM NPS 2143 

F standard 5 N-serum 2.5 µM CC-325 N-serum 2.5 µM NPS 2143 

G Control 1 N-serum 1.25 µM CC-325 N-serum 1.25 µM NPS 2143 

H Control 2 N-serum 0.6125 µM CC-325 N-serum 0.6125 µM NPS 2143 

Note. *= Due to insufficient volume of naïve serum; data from A3-4 was used for A5-6 and data from B3-4 was 

used for B5-6. N- Serum is naïve serum.  

 

Figure 12. 

Standard curve for FGF23 ELISA assay.  
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Both control I and II were within the manufacturer established range. To measure the 

impact of DMSO on the FGF23 assay, data from naïve serum + DMS (B3-4) were compared 

with data from Naïve serum alone (A3-4).  The addition of DMSO to naïve serum had a negative 

impact on the concentration of FGF23 in serum, which was measured at 1.5% (Table 25).  To 

further measure the impact of test articles on FGF23 assay, the result from each well was 

compared with well with N-serum + DMSO.   Percent changes for each concentration are listed 

in Table 25.    

Table 25. 

The FGF23 ELISA Results for CC-325 and NPS 2143 Interference Testing  

 Mean Value 

Well 1 & 2 

Mean Value 

Well 3 & 4 

Mean Value 

Well 5 & 6 

A Blank 118 118* 

B Standard 116 (-1.5)1 116 (-1.5) *1 

C Standard 107 (-8.0)2 97 (-16.7)2 

D Standard 109(-6.0)2 110 (-4.9)2 

E Standard 114 (-1.5)2 111 (-4.3)2 

F Standard 115 (-0.9)2 114 (-1.9)2 

G 77 112 (-3.4)2 112 (-3.7)2 

H 199 105 (-9.4)2 103 (-11.5)2 

Note. ( ) indicates percent change; 1= percent change from N-serum; 2= percent change from N-serum + DMSO.  

Control I range: 46-76; Control range II: 140-234.  * = Due to insufficient volume of naïve serum; data from A3-4 

was used for A5-6 and data from B3-4 was used for B5-6. 

The effect of CC-325 on FGF23 assay was not dose dependent and the maximum 

decrease in FGF23 concentration was observed at the highest and lowest concentration of  

CC-325 (Table 25, Figure 13).  CC-325 of 2.5 µM caused the minimum decrease (0.9%) in 

FGF23 concentration. Overall, there is no conclusive evidence that presence of CC-325 in 

sample could affect the concentration of FGF23 in serum in a significant way.  Based on the 
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information in package insert the inter-assay coefficient of variation is 4.0% for low (60 pg/mL) 

and high (167 pg/mL) concentrations.   

The effect of NPS 2143 on FGF23 assay was not dose dependent either.  The largest 

change was observed at the highest and lowest concentration of NPS 2143 in the samples.  Since 

the data from wells A&B 3-4 were copied to wells A&B 5-6, respectively, it is possible that 

additional errors are introduced in column 5-6 calculations.  These data show the largest negative 

change (-17%) at 20 µM, and the lease amount of change at 2.5 µM (1.9%).   

 Figure 13. 

Percent change in serum FGF23 measurement from target value (naïve serum) due to CC-325 

(A) and NPS 2143 (B) concentrations in serum. 
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Main Study Results 

Clinical Observations 

All animals survived until scheduled necropsy. A statistically significant decrease in body 

weight was seen in CC-325 and C-325 + NPS 2143 treatment groups on Days 3-5, when 

compared with vehicle control group.  Animals in Group 4, NPS 2143 alone, were weighed only 

on Day 5.  The change in body weights is shown in Figure 14 and statistical analysis values are 

listed in Table 26.  Raw body weight data is shown in Appendix F.  Clinical sign of toxicity was 

observed in animals treated with CC-325.  On Day 4, one animal from Group 2 had hunched 

posture and another animal from Group 2 and two animals from Group 4 had pilo-erection. On 

Day 5, one animal from Group 2 and two animals from Group 4 had hunched posture and one 

animal from each Group 2 and 4 had pilo-erection.  Summary of the clinical signs are shown in 

Appendix G.  

Figure 14. 

Mean (±SD) body weight for all treatment group.   
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Table 26. 

Mean Body Weight for All Treatment Groups. 

Treatment Day 1 Day 2 Day 3 Day 4 Day 5 

Vehicle 27.04 26.48 26.39 26.48 26.80 

CC-325 26.73 26.27 24.43*** 22.14**** 20.62**** 

NPS 2143 ND ND ND ND 27.13 

CC-325 + NPS 2143 27.16 26.62 24.81*** 22.28**** 20.86**** 

Note. *** = p≤ 0.001; **** = p≤ 0.0001 

Toxicokinetic Data 

Toxicokinetic blood collection procedure and timepoints are described in detail in 

method section.  A summary of TK dose concentrations and blood collection timepoints is 

shown in Table 27.   

Table 27. 

Dose Concentration and Blood Collection Timepoints for Toxicokinetic Treatment Groups. 

Blood Collection Time Points (hr) 

Group Treatment 0 1.5 3 5 9 24 

5 
CC-325 

15 mg/kg BID 
√ √ √ √ √ √ 

6 
NPS 2143 

120 mg/kg/day 
√ √ √ √ √ √ 

7 

CC-325 

15 mg/kg BID 

NPS 2143 

120 mg/kg/day 

√ √ √ √ √ √ 

Plasma concentrations of CC-325 from single agent and combination treatment groups, 

Groups 5 and 7, are shown in Table 28. Test article CC-325 was administered one hour prior to 

NPS 2143 administration, therefore the collection timepoints for CC-325 were one hour longer 

than the collection timepoints for NPS 2143.  Exposures (AUC) were calculated for 0-25 hours; 

the exposure of CC-325 was 10.1 and 14.7 µM for single agent and combination treatment, 

respectively.  Based on the expert opinion from Drug Metabolism and Pharmacokinetic (DMPK) 
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department toxicokinetic scientist, these two values are roughly similar, meaning there is no 

evidence of drug-drug interaction.  Because the exposures of CC-325 in treatment Groups 2 and 

4 were similar, we would expect a similar change in iCa2+ and PTH in these treatment groups.   

Table 28. 

Mean Plasma Concentrations of CC-325 for Groups 5 and 7.  

Mean Plasma Concentrations of CC-325 

Day 5 CC-325 CC-325 + NPS 2143 

Time (hr) Concentration (µM) Concentration (µM) 

0 0.340 0.370 

1.5 1.480 1.250 

3 0.827 1.810 

5 0.513 0.443 

9 0.223 0.567 

25 0.295 0.293 

AUC (0-25) (µM.hr) 10.1 14.7 

Cmax 1.48 1.81 

Tmax 1.5 1.5 

Plasma concentrations of NPS 2143 from single agent and combination treatment groups, 

Groups 6 and 7, are shown in Table 29. Test article NPS 2143 was administered one hour after 

the CC-325 administration, therefore the collection timepoints for NPS 2143 are one hour shorter 

than the collection timepoints for CC-325.  Exposures were calculated for 0-24 hours, which 

were 6.2 and 16.6 µM for single agent and combination group, respectively.  The exposure of 

NPS 2143 in the combination groups was greater than the exposure as a single agent, which 

could result in increased pharmacological effects in the combination group.   The exact reason 

for increased exposure of NPS 2143 in Group 4 is unknown, however drug-drug interaction 

between CC-325 and NPS 2143 could have caused this increase.  Raw TK data is listed in 

Appendix F.  
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Table 29. 

Mean Plasma Concentrations of NPS 2143 for Groups 6 and 7.  

Mean Plasma Concentrations of NPS 2143 

Day 5 NPS-2143 NPS 2143 + CC-325 

Time (hr) Concentration (µM) Concentration (µM) 

0 ? 0.00 

0.5 0.495 1.36 

2 0.582 2.01 

4 0.765 0.918 

8 0.224 0.82 

24 0.0190 0.0866 

AUC (0-24) (µM.hr) 6.2 16.6 

Cmax 0.765 2.01 

Tmax 4.0 2.0 

Blood collection for endpoints measurements   

Based on the reported efficacy of NPS 2143 in literature, and our own pilot data, the 

effects of orally administered NPS 2143 on PTH and iCa2+ is acute and Cmax dependent.  Based 

on the pilot study data, the dose of 200 mg/kg had the maximum effect on PTH at 2-hr postdose 

and iCa2+ at 4-hr postdose.  Therefore, not only these timepoints were included in the blood 

collection timepoints, but also, they were collected precisely at each timepoint.  To reduce the 

variability associated with the sample collection time, all samples were collected within two 

minute of target time.  The blood collection schedule for all treatment groups is listed in 

Table 30.  
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Table 30. 

Schedule of Sample Collection for All Tests. 

  Group 1 Group 2 Group 3 Group 4 

Treatment Time* Vehicle 2 CC-325 NPS 2143 CC-325 + NPS 2143 

Sample 

collection 

on Day 5 

Day 5 

(0-hr) 
Predose 

1-hr 

Postdose 
Predose 

Prior to NPS 2143 dose and  

1-hr post CC-325 dose 

Day 5 

(2-hr) 

2-hr 

Postdose 

3-hr 

Postdose 

2-hr 

Postdose 

2-hr post 2143 dose and 3-hr 

post CC-325 dose 

Day 5 

(4-hr) 

4-hr 

Postdose 

5-hr 

Postdose 

4-hr 

Postdose 

4-hr post 2143 dose and 5-hr 

post CC-325 dose 

Day 5 

(6-hr) 

6-hr 

Postdose 

7-hr 

Postdose 

6-hr 

Postdose 

4-hr post 2143 dose and 7-hr 

post CC-325 dose 

Day 6 

(24-hr) 

24-hr 

Postdose 

25-hr 

Postdose 

24-hr 

Postdose 

24-hr post 2143 dose and  

25-hr post CC-325 dose 

Note. * = Time is based on the NPS 2143 dose 

Serum Chemistry (Axcel analyzer) 

The individual results for serum chemistry are listed in Appendix H.  The value of 

globulin was calculated by subtracting albumin value from total protein.  Each time point was a 

terminal sacrifice; therefore, no serial samples were collection for serum chemistry.  Statistical 

analysis was performed by comparing each treatment group with vehicle control group at each 

timepoint.   However, in order to assess the effect of NPS 2143 on calcium concentration, as a 

single agent or combination treatment, the data from Group 2, CC-325 alone, was compared with 

Group 4, CC-325 + NPS 2143 treatment group. 

Total serum calcium analysis was conducted using Axcel analyzer.  The total serum 

calcium values were consistent with whole blood ionized calcium values measured by Stat Prime 

Profile analyzer at necropsy.  The first measurement on Day 5 was at 0-hr, which was after 

5 days of daily dosing including the morning of Day 5.  Based on the in-house historical data, the 

drop in calcium at 0-hr was expected and based on the data from the pilot study the increase in 

calcium in NPS 2143 treated animals was also expected. 



www.manaraa.com

96 

No changes in total calcium concentrations were seen in vehicle control group during the 

measurement period, 0-24 hours.  Serum calcium in Group 2, CC-325 single agent treatment 

group, was 33-43% below vehicle control group level during the measurement period. The 

calcium concentration in NPS 2143 treatment group, Group 3, increased shortly after dosing and 

peaked at 4- to 6-hr timepoints (both similar values) before returning to predose values by 24-hr. 

The calcium in CC-325 + NPS 2143 treatment groups was initially low, however, it increased 

minimally at 2-hr (17%) and 4-hr (16%) timepoints when compared to CC-325 only treatment 

groups at the same timepoints, Figure 15.  The total calcium in each treatment group was 

compared to vehicle control groups and is reported as percent difference in Figure 16 and 

Table 31.  

Figure 15. 

Mean (± SD) of total calcium in serum for all treatment groups. 

D
ay

 5
 (0

-h
r)

D
ay

 5
 (2

-h
r)

D
ay

 5
 (4

-h
r)

D
ay

 5
 (6

-h
r)

D
ay

 6
 (2

4-
hr)

0

2

4

6

8

10

12

14

16

Total Calcium

C
a
lc

iu
m

 (
m

g
/d

L
)

Vehicle

CC-325

NPS 2143

CC-325 + NPS 2143

 

 

 

 

 

 



www.manaraa.com

97 

Figure 16. 

Total calcium percent difference from vehicle control group. 

 

Note. Serum total calcium percent difference from vehicle control group. The green horizontal 

line shows the vehicle control group calcium value that was used to calculate the percent 

difference from other treatment groups.   

 

Table 31. 

Mean Serum Chemistry for All Treatment Groups. 

Analyte Time 

Group 1 Group 2 Group 3 Group 4 

Vehicle CC-325 NPS 2143 
CC-325 + 

NPS 2143 

Calcium 

(mg/dL) 

Baseline 9.84 6.58**** 9.84 6.10**** 

2-hr 9.72 6.42**** 11.08** 7.52**** 

4-hr 9.58 5.46**** 12.06**** 6.38**** 

6-hr 9.62 5.63**** 11.98**** 5.82**** 

24-hr 10.10 6.04**** 10.12 6.60**** 

Note. ** = p≤ 0.01; **** = p≤ 0.0001 

The change in serum magnesium, another divalent cation that effects CaSR, is less 

pronounced than calcium but had a similar trend to calcium (Figure 17, Table 32).  There was a 

slight increase in magnesium in NPS 2143 treated mice at 2- and 4-hr timepoints, however, it 
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was smaller in both magnitude and duration when compared to calcium increase at the same 

group.  The change in magnesium levels in the CC-325 and CC-325 + NPS 2143 treated mice 

were less pronounced and did not follow calcium trend.   

Figure 17. 

Mean (± SD) of serum magnesium for all treatment groups. 
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Table 32. 

Mean Serum Chemistry for All Treatment Groups. 

Analyte Time 

Group 1 Group 2 Group 3 Group 4 

Vehicle CC-325 NPS 2143 
CC-325 + 

NPS 2143 

Magnesium 

(mg/dL) 

Baseline 2.90 2.14** 2.80 2.30* 

2-hr 2.56 2.28 3.14* 2.60 

4-hr 2.66 2.14 3.10 2.52 

6-hr 2.74 2.52 2.60 2.08* 

24-hr 2.58 2.24 2.52 2.68 

Note. * = p≤ 0.05; ** = p≤ 0.01 

The results of serum phosphate for all treatment groups is shown in Figure 18 and 

Table 33.  The phosphate levels in CC-325 and CC-325 + NPS 2143 treated mice was 

significantly increased in response to decrease in calcium at all timepoints, except 0-hr for  
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CC-325 single agent treatment group.  There was no significant difference between NPS 2143 

single agent treatment group and vehicle control group.     

Figure 18. 

Mean (± SD) of serum phosphate for all treatment groups. 
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Table 33. 

Mean Serum Chemistry for All Treatment Groups. 

Analyte Time 

Group 1 Group 2 Group 3 Group 4 

Vehicle CC-325 NPS 2143 
CC-325 + 

NPS 2143 

Phosphate 

(mg/dL) 

0-hr 6.58 6.64 5.92 9.68*** 

2-hr 6.62 8.86* 7.24 8.42 

4-hr 6.92 9.70** 5.74 9.86** 

6-hr 7.42 11.38**** 6.64 9.86* 

24-hr 6.56 10.52**** 5.58 9.50** 

24-hr 1.48 1.60 1.30 1.50 

Note. * = p ≤ 0.05; ** = p ≤ 0.01; *** = p ≤ 0.001; **** = p ≤ 0.0001 

The albumin concentrations are shown in Figure 19 and Table 34.  Serum albumin level 

in CC-325 only treatment group was significantly lower than the vehicle control group at 4-hr 

postdose.  In NPS 2143 only treatment group, albumin was significantly lower at 2-, 4-, and 6-hr 
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postdose.  In combination group, albumin was significantly lower at 4- and 6-hr timepoints.  

Some of the changes were likely due to slight increase in serum albumin in control group and 

slight decrease in test article treatment groups.   

Figure 19. 

Mean (± SD) of serum albumin for all treatment groups. 
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Table 34. 

Mean Serum Chemistry for All Treatment Groups. 

Analyte Time 

Group 1 Group 2 Group 3 Group 4 

Vehicle CC-325 NPS 2143 
CC-325 + 

NPS 2143 

Albumin 

(g/dL) 

0-hr 2.96 2.92 2.94 2.98 

2-hr 3.06 3.10 2.76** 2.92 

4-hr 3.18 2.72**** 2.70**** 2.82*** 

6-hr 3.08 2.97 2.82* 2.80** 

24-hr 3.08 3.0 2.98 2.98 

Note. * = p ≤ 0.05; ** = p ≤ 0.01; *** = p ≤ 0.001; **** = p ≤ 0.0001 

The total protein concentrations are shown in Figure 20 and   



www.manaraa.com

101 

Table 35. Total protein had similar changes to albumin, and although the changes were 

statistically significant, the actual magnitude of the change was small and had little biological 

impact.  Globulin values are shown in Figure 21 and Table 36. There was a minimal but 

statistically significant decrease in globulin at 2-, 4-, and 6-hr postdose in test article treated 

groups, likely due to minimal decrease in total protein when compared with vehicle control 

group Table 36.  The values for A/G calculation are shown in Figure 22, and the data shows 

significant increase at 6-hr timepoint in CC-325 and  

CC-325 + NPS 2143 treated mice, however, the change is minimal and has no pharmacological 

relevance.   

Figure 20. 

Mean ± standard deviation of serum total protein for all treatment groups, (n=5/timepoint). 
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Table 35. 

Mean Serum Chemistry for All Treatment Groups. 

Analyte Time 

Group 1 Group 2 Group 3 Group 4 

Vehicle CC-325 NPS 2143 
CC-325 + 

NPS 2143 

Total Protein 

(g/dL) 

0-hr 4.94 4.92 4.90 4.72 

2-hr 5.10 4.90 4.64** 4.78 

4-hr 5.36 4.46**** 4.50**** 4.64**** 

6-hr 5.36 4.82** 4.80** 4.52**** 

24-hr 5.22 4.90 5.28 4.98 

Note. * = p ≤ 0.05; ** = p ≤ 0.01; *** = p ≤ 0.001; **** = p ≤ 0.0001; ND = No Data 

 

Figure 21. 

Mean ± standard deviation of serum globulin for all treatment groups.  
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Figure 22. 

Mean ± standard deviation of albumin/globulin ration for all treatment groups. 
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Table 36. 

Mean Serum Chemistry for All Treatment Groups. 

Analyte Time 

Group 1 Group 2 Group 3 Group 4 

Vehicle CC-325 NPS 2143 
CC-325 + 

NPS 2143 

Globulin 

(g/dL) 

0-hr 1.98 2.00 1.96 1.74* 

2-hr 2.04 1.80* 1.86 1.86 

4-hr 2.18 1.74**** 1.80*** 1.82** 

6-hr 2.28 1.85*** 1.98** 1.72**** 

24-hr 2.14 1.90* 2.30 2.0 

Albumin/Globulin 

0-hr 1.54 1.48 1.50 1.72 

2-hr 1.50 1.72* 1.50 1.58 

4-hr 1.48 1.58 1.52 1.58 

6-hr 1.38 1.60* 1.44 1.64** 

24-hr 1.48 1.60 1.30 1.50 

Note. * = p ≤ 0.05; ** = p ≤ 0.01; *** = p ≤ 0.001; **** = p ≤ 0.0001; ND = No Data 
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Serum Chemistry (Stat Profile Prime)  

Prior to sacrifice of each mouse, 100 µL of whole blood was collected in capillary tubes 

with lithium heparin preservative.  Samples were immediately loaded into a Stat Profile Prime 

analyzer and Na+, K+, Cl-, iCa2+, and pH were measured. Raw data from Stat Profile Prime is 

tabulated in Appendix I.   The level of iCa2+ in vehicle control group was consistent during the 

measurement period, 0 to 24 hours postdose. The mice treated with CC-325 either as a single 

agent or combination with NPS 2143 had decrease in iCa2+ level at 0-hr, compared to the vehicle 

control group, which was consistent with in-house historical data (Table 37).  The level of iCa2+ 

in the CC-325 single agent treatment group, was low during the 0- to 24-hr measurement period, 

however,  treatment group CC-325 + NPS 2143 had minimal increase at  2-hr (16%) and 4-hr 

(11%) post NPS 2143 dose.  Mice treated with NPS 2143 alone had normal level of iCa2+ at 0-hr 

(prior to NPS 2143 dose) and significantly increased levels at 2-, 4-, and 6-hr timepoints.  The 

level of iCa2+ returned to baseline by 24-hr postdose, which was consistent with the decrease in 

exposure of NPS 2143 in these mice.   

Percent difference of iCa2+ was calculated by comparing each treatment group with vehicle 

control group, and data from these calculations are shown in  

Figure 24. The maximum decrease in iCa2+ was observed at 4- and 6-hr postdose in CC-325 

treated mice, which was 35% and 36% decrease, respectively. The maximum decrease in iCa2+ 

in CC-325 + NPS 2143 mice was observed at 0- and 6-hr postdose, which was about 35%. The 

maximum increase in iCa2+ was observed in NPS 2143 treatment group, which was measured at 

4-hr postdose.  
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Figure 23. 

Mean (± SD) of iCa2+ in whole blood for all treatment groups. 

D
ay

 5
 (0

-h
r)

D
ay

 5
 (2

-h
r)

D
ay

 5
 (4

-h
r)

D
ay

 5
 (6

-h
r)

D
ay

 6
 (2

4-
hr)

0

1

2

3

4

5

6

7

8

iCa2+

iC
a

2
+
 m

g
/d

L

Vehicle

CC-325

NPS 2143

CC-325 + NPS 2143

 

 

Figure 24. 

Ionized calcium percent difference from vehicle control group.  
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Note. Percent iCa2+ difference from vehicle control group for all treatment groups. The green 

horizontal line shows the vehicle control ionized calcium value that was used to calculate the 

percent difference from other treatment groups.   

 

Table 37. 

Mean Serum Chemistry for All Treatment Groups. 

Analyte Time 

Group 1 Group 2 Group 3 Group 4 

Vehicle CC-325 NPS 2143 
CC-325 + 

NPS 2143 

iCa2+ 

(mg/dL) 

0-hr 5.13 3.84* 5.14 3.33*** 

2-hr 4.92 3.41*** 5.21**** 4.08 

4-hr 4.98 3.22**** 6.42*** 3.63*** 

6-hr 5.06 3.26**** 6.11** 3.34** 

24-hr 4.99 3.38** 4.78 3.76** 

Note. * = p ≤ 0.05; ** = p ≤ 0.01; *** = p ≤ 0.001; **** = p ≤ 0.0001; ND = No Data 

The effect of test article on the pH was also measure (Figure 25 and Table 38).  There 

was no effect on pH by either test articles, suggesting that pH did not adversely affect iCa2+ 

measurement.  

Figure 25. 

Mean (± SD) of blood pH for all treatment groups. 
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Table 38. 

Mean Serum Chemistry for All Treatment Groups. 

Analyte Time 

Group 1 Group 2 Group 3 Group 4 

Vehicle CC-325 NPS 2143 
CC-325 + 

NPS 2143 

pH 

0-hr 7.21 7.29 7.29 7.25 

2-hr 7.32 7.27** 7.24 7.21* 

4-hr 7.28 7.24 7.25 7.22 

6-hr 7.24 7.20 7.23 7.28 

24-hr 7.27 7.22 7.28 7.19 

6-hr 113.6 112.8 114.0 113.0 

24-hr 109.8 112.2 112.0** 114.0** 

Note. * = p ≤ 0.05; ** = p ≤ 0.01; ND = No Data 

The only significant change in Na+ was observed in the CC-325 + NPS 2143 treatment 

group, which was an increase at 24-hr timepoint.  There were no significant changes in K+, and 

changes in Cl- at 24-hr timepoints were most likely due decrease in Cl- in the vehicle treatment 

groups.  The values for Na+, K+, and Cl- are shown in Figure 26 through Figure 28, and   
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Table 39.   

Figure 26. 

Mean (± SD) of Na+ for all treatment groups. 
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Figure 27. 

Mean (± SD) of K+ for all treatment groups. 
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Figure 28. 

Mean (± SD) of Cl- for all treatment groups. 

D
ay

 5
 (0

-h
r)

D
ay

 5
 (2

-h
r)

D
ay

 5
 (4

-h
r)

D
ay

 5
 (6

-h
r)

D
ay

 6
 (2

4-
hr)

105

110

115

120

125

Cl-
C

l-  (
m

m
o

l/
L

)

Vehicle

CC-325

NPS 2143

CC-325 + NPS 2143

 

 

  



www.manaraa.com

110 

Table 39. 

Mean Ionized Calcium, Electrolytes, and pH Values for All Treatment Groups. 

Analyte Time 

Group 1 Group 2 Group 3 Group 4 

Vehicle CC-325 NPS 2143 
CC-325 + 

NPS 2143 

Na+ 

(mmol/L) 

0-hr 144.6 145.5 141.6 145.0 

2-hr 143.0 144.2 142.0 143.4 

4-hr 145.4 145.6 145.6 147.0 

6-hr 146.8 146.4 144.8 145.0 

24-hr 144.6 148.6 143.8 151.8* 

K+ 

(mmol/L) 

0-hr 4.746 4.742 4.974 5.270 

2-hr 5.236 5.006 4.838 4.750 

4-hr 5.370 4.940 5.050 4.980 

6-hr 5.148 4.836 5.134 4.770 

24-hr 5.074 4.904 5.134 4.914 

Cl- 

(mmol/L) 

0-hr 116.8 117.0 115.2 117.0 

2-hr 115.8 116.8 115.2 115.2 

4-hr 112.0 111.2 113.4 112.6 

6-hr 113.6 112.8 114.0 113.0 

24-hr 109.8 112.2 112.0** 114.0** 

Note. * = p ≤ 0.05; ** = p ≤ 0.01 

 

Serum PTH (ELISA Assay) 

Serum samples were removed from the refrigerator and thawed on ice until processed for 

analysis.  Samples were run in three different plates.  In order to reduce the impact of plate to 

plate variation of data analysis, samples from each timepoint were run together.  All the samples 

from 0- and 2-hr were ran on plate 1, samples from 4- and 6-hr were ran in plate 2 and samples 

from 24-hr were ran in plate 3.  Based on the pilot study data, it was predicted that samples from 

Group 3 would have high PTH values, therefore samples from Group 3 (with the exception of  
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0-hr) were diluted 1 to 5 (1:5) and were loaded into plate 3 for analysis.  Results from the diluted 

run were used for data analysis, and Table 40 shows the PTH results for all treatment groups.   

The PTH data had similar trend as iCa2+ with slightly different time course.  The serum 

PTH levels in vehicle control group were variable, with highest level of PTH observed at 4-hr 

timepoint.  The serum PTH level in mice treated with CC-325, Group 2 and 4, was below levels 

compared to vehicle treated animals at every timepoint. The PTH level in mice treated with NPS 

2143 as a single agent, Group 3, was significantly increased, with the peak of 675 pg/mL at 2-hr 

post dose.  The increased level of serum PTH in these mice continued until 6-hr post dose and 

returned to baseline at 24-hr postdose, which is consistent with decrease in exposure to NPS 

2143 in these mice.  The mice in Group 4, CC-325 + NPS 2143 treatment group, did not have an 

increase in serum PTH even after administration of NPS 2143, Figure 29 and Table 40.   

Figure 29. 

Mean (± SD) of serum PTH for all treatment groups. 
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Table 40. 

Mean PTH Values for All treatment Groups. 

Analyte Time 

Group 1 Group 2 Group 3 Group 4 

Vehicle CC-325 NPS 2143 
CC-325 + 

NPS 2143 

PTH1 

(pg/mL) 

0-hr 57.64 35.57* 48.72 45.28 

2-hr 95.04 30.42 674.4*** 54.55 

4-hr 182.4 22.80 436.6 39.97 

6-hr 51.59 27.60 532.1* 29.78 

24-hr 54.34 22.93* 90.48* 28.13 

Note. * = p ≤ 0.05; *** = p ≤ 0.001 

The level of serum PTH in each treatment group was compared with vehicle control 

group and percent change from vehicle control groups was calculated, the result of this analysis 

is shown in Figure 31.   

Figure 30. 

Serum PTH percent difference from vehicle control group. 

 

Note. Percent PTH difference from vehicle control group for all treatment groups. The green 

horizontal line shows the vehicle control ionized calcium value that was used to calculate the 

percent difference from other treatment groups.   
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Serum FGF23 (ELISA assay) 

Serum samples were removed from the refrigerator and thawed on ice until processed for 

analysis.  Samples were run in three different plates.  Similar to the PTH sample analysis, 

samples from each timepoint were run together in one plate to reduce the impact of plate to plate 

variation on sample analysis.  All the samples from 0- and 2-hr were ran on plate 1, samples 

from 4- and 6-hr were ran in plate 2 and samples from 24-hr were ran in plate 3.  The FGF23 

data is shown in Figure 31 and Table 41.  Serum FGF23 levels in vehicle control group ranged 

from 131-211 pg/mL.  Since there is no historical data for serum FGF23 concentration in 

huCRBN KI mice, the vehicle control values were used for comparison and statistical analysis.  

The serum FGF23 level in mice treated with CC-325, either as a single agent or combination 

with NPS 2143, was significantly lower than the vehicle control at all measured timepoints.  The 

level of serum FGF23 in NPS 2143 animals did not change during any of the measured 

timepoints.  The administration of NPS 2143 after CC-325 treatment, Group 4, did not appear to 

change the FGF23 in these mice.  Further analysis of the data was performed by calculating the 

percent difference for each treatment group at each timepoint, Figure 32.   



www.manaraa.com

114 

Figure 31. 

Mean (± SD) of serum FGF23 for all treatment groups. 
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Table 41. 

Mean FGF23 Values for All treatment Groups 

Analyte Time 

Group 1 Group 2 Group 3 Group 4 

Vehicle CC-325 NPS 2143 
CC-325 + 

NPS 2143 

FGF23 

(pg/mL) 

0-hr 146.9 50.16** 200.1 46.92** 

2-hr 210.7 52.55* 156.8 50.83* 

4-hr 177.6 33.95** 208.3 44.39** 

6-hr 123.9 48.38*** 183.3 44.87**** 

24-hr 132.8 21.51*** 213.9 28.05*** 

Note. * = p ≤ 0.05; ** = p ≤ 0.01; *** = p ≤ 0.001; **** = p ≤ 0.0001 
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Figure 32. 

FGF23 percent difference from vehicle control group. 

 

Note. FGF23 percent difference from vehicle control group. The green horizontal line shows the 

vehicle control FGF23 value that was used to calculate the percent difference from other 

treatment groups.  

  

Histopathology evaluation 

Parathyroid glands from all treatment groups were collected at necropsy and stored in 

10% neutral buffer formalin (NBF) for 48 hours and then transferred to 70% ethanol and held 

until processing.  The mouse parathyroid is very small tissue that is sitting on top of the thyroid 

that is attached to each side of the mouse trachea. Due to its small size, it can be difficult to 

locate and section. The histology contract lab in charge of processing and sectioning the 

parathyroid glands had difficulty locating parathyroid for several mice.   This resulted in missing 

parathyroid for several animals including 3 from Group 1, 7 from Group 2, 2 from Group 3, and 

5 from Group 4.   

The only histopathological finding in parathyroid was necrosis, which was observed in 

animals treated with CC-325 or CC-325 + NPS 2143.  The summary of findings is listed below 

in Table 42.  
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Table 42. 

Summary of Microscopic Findings for All Treatment Groups.  

 Dosage Group Control 2 3 4 

 Number of 

Animals 

25 25 25 25 

 Number 

Examined 

22 18 23 21 

 Number 

Unremarkable 

22 18 23 18 

Gland, 

Thyroid/Gland, 

parathyroid 

Number 

Examined 

22 18 23 21 

Necrosis 

Animals number 

(severity) 

 2011(m) 

2013(m) 

2014(m) 

2015(mi) 

2021(m) 

2022(m) 

2024(mi) 

2025(m) 

 4015(mi) 

4019(mi) 

4024(mi) 

Total Findings 

Incidence 

 0 8 0 3 

Note. m = Minimal; mi = Mild 

Immunohistochemistry 

Two unstained parathyroid slides from each animal were obtained and used for 

immunohistochemistry staining.  One slide was used for PTH and another for GSPT1 staining.  

After staining, slides were loaded into an Aperio automatic slide scanner and scanned.  The 

images were then loaded into HALO software and the intensity of the stains were scored. As 

described in method section, the scores for IHC range from 1-300, with 1 being no stain and 300 

being the maximum stain.  The higher the stain intensity, the higher the amount of the biomarker 

was present.   
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PTH 

The summary of the IHC for PTH data is shown in Figure 32 and Table 43.  The  

H-scores from vehicle control groups at each timepoint served as a baseline for PTH in 

parathyroid gland. The mice treated with CC-325 single agent or in combination with NPS 2143 

had significantly lower levels of PTH in the parathyroid gland at all timepoints (0- to 24-hr), 

however, the mice treated with CC-325 + NPS 2143 had slightly lower PTH at 2-hr post 

treatment than CC-325 as a single agent.  The mice treated with NPS 2143 as a single agent, had 

the same level of PTH at 0-hr (pre dose) and significantly lower level of PTH at 2- and 6-hr 

postdose when compared with the vehicle control group.  The levels of PTH in all treatment 

groups were compared with vehicle control group, and a summary of the statistical analyses is 

shown in Table 43 below.  A representative of IHC staining from selected animals is shown in 

Figure 35. The intensity of the staining from representative animals at each timepoint is 

consistent with the scores provided in Table 43.   
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Figure 32. 

Mean ± SEM of PTH H-Score for all treatment groups. 
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Table 43. 

Mean PTH H-Score for IHC Stained Parathyroid Sections. 

Analyte Time 

Group 1 Group 2 Group 3 Group 4 

Vehicle CC-325 NPS 2143 
CC-325 + 

NPS 2143 

PTH 

(H-Score) 

0-hr 206.0 99.93**** 231.5 84.13**** 

2-hr 199.0 67.33**** 131.9*** 38.82**** 

4-hr 210.1 57.62**** 175.6 52.50**** 

6-hr 218.9 46.39**** 169.5* 44.91**** 

24-hr 205.9 58.70**** 220.6 57.88**** 

Note. * = p ≤ 0.05; ** = p ≤ 0.01; *** = p ≤ 0.001; **** = p ≤ 0.0001 

 

The percent change in PTH for each treatment group was calculated by comparing the 

difference between the PTH in that group and vehicle control group.  The decrease in PTH in 

CC-325 single agent treatment group was 51-80%, in CC-325 + NPS 2143 treatment groups it 

was 59-79%, and in NPS 2143 as a single agent treatment group it was 16-34%.  There was a 



www.manaraa.com

119 

minimal increase (7-12%) in PTH in NPS 2143 single agent treatment group at 0- and 24-hr 

timepoints. The result of this calculations is shown in Figure 34.  

Figure 34. 

PTH H-Score percent difference from vehicle control group. 

 

Note. Percent PTH H-Score difference from vehicle control group for all treatment groups. The 

green horizontal line shows the vehicle control PTH H-Score value that was used to calculate the 

percent difference from other treatment groups.   

The IHC images below in Error! Reference source not found. are representative 

images of the PTH staining in parathyroid gland for each treatment group at different timepoints.  

The mice in vehicle control group had the highest staining representing the normal level of PTH 

in parathyroid.  The mice in the CC-325 single agent treatment group (Group2) had decreased 

staining, which indicates decreased level of PTH in parathyroid at all timepoints.   The mice 

treated with NPS 2143 as a single agent had similar staining to vehicle control group at 0-hr but 

decreased staining at 2- and 4-hr timepoints, which returned to baseline by 24-hr.  The mice 

treated with CC-325 + NPS 2143 had similar staining intensity as CC-325 single agent treatment 
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group, however, the overall scoring of each timepoint shows that the PTH was slightly lower at 

2-hr timepoint in the CC-325 + NPS 2143 treatment group when compared with the CC-325 

single agent treatment group.  

Figure 35.  

 

Parathyroid hormone Immunohistochemistry staining images.  
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Note. Representative images of IHC staining for PTH in parathyroid gland from each treatment 

groups at different timepoints. Animal numbers are provided under each treatment group.  

 

GSPT1 

The summary of the IHC H-scores for GSPT1 staining is shown in Figure 33 and  

Table 44.  The H-Score from vehicle control group shows average GSPT1 in parathyroid 

gland during the 24-hour measurement period. The mice treated with CC-325 as a single agent or 

in combination with NPS 2143 had significantly lower level of GSPT1 H-Score in parathyroid 

gland at all timepoints (0- to 24-hr).  The H-Score for mice treated with CC-325 as a single agent 

was slightly lower than the combination group at 0-, 4-, 6, and 24-hr timepoints.  The GSPT1  

H-score of the mice treated with NPS 2143 as a single agent did not differ from vehicle control 

group.  The level of GSPT1 in all treatment groups were compared with vehicle control group, 

and a summary of statistical analysis is shown in  

Table 44.   

Figure 33. 

Mean ± SEM of PTH H-Score for all treatment groups. 
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Table 44. 

Mean GSPT1 H-Score for IHC Stained Parathyroid Gland Sections. 

Analyte Time 

Group 1 Group 2 Group 3 Group 4 

Vehicle CC-325 NPS 2143 
CC-325 + 

NPS 2143 

GSPT1 

(H-Score) 

0-hr 260.0 133.0**** 254.2 155.4**** 

2-hr 260.7 151.6**** 239.5 154.4**** 

4-hr 248.8 114.2**** 259.4 162.8*** 

6-hr 245.9 113.9**** 243.3 152.4**** 

24-hr 259.6 130.3**** 247.5 154.2**** 

Note. *** = p ≤ 0.001; **** = p ≤ 0.0001 

 

The percent difference in GSPT1 H-Scores between test article treated mice and vehicle 

control group was calculated, and data from this analysis is shown in Figure 34. The percent 

decrease in H-Scores in the CC-325 single agent treatment group was 42-54%, in CC-325 + NPS 

2143 treatment group was 35-41%, and in NPS 2143 single agent treatment group was 2-8%.  In 

NPS 2143 single agent treatment groups, there was a minimal (4%) increase in GSPT1 H-Score 

at 4-hr timepoint.   
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Figure 34. 

GSPT1 H-Score percent difference from vehicle control group. 

 

Note. Percent GSPT1 H-Score difference from vehicle control group. The green horizontal line 

shows the vehicle control GSPT1 IHC H-Score that was used to calculate the percent difference 

in other treatment groups.   

 

A representative of IHC image for each timepoint is below, Figure 35, are the 

representation of the GSPT1 staining in parathyroid for each treatment group at different 

timepoints.  The mice in vehicle control group had the highest staining representing the normal 

GSPT1 in parathyroid.  The mice in the CC-325 single agent treatment group (Group2) had 

decreased staining, which indicates decreased level of GSPT1 in parathyroid at all timepoints.   

The mice treated with NPS 2143 as a single agent had similar staining to vehicle control group. 

The mice treated with CC-325 + NPS 2143 had similar staining intensity as CC-325 single agent 

treatment group, however, the overall scoring of each timepoint shows that GSPT1 in this 

treatment group is slightly higher than the CC-325 single agent treatment group.   
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Figure 35. 

GSPT1 Immunohistochemistry staining images.  

 

 

Note. Representation of IHC staining for GSPT1 in parathyroid gland from each treatment 

groups at different timepoints. Animal numbers are provided under each treatment group.  

 

In Situ Hybridization: 

The summary of the ISH H-Score for PTH mRNA is shown in Figure 36 and Table 45.  

The vehicle control group PTH mRNA H-Score represents the baseline level for huCRBN KI 

mice.  The level of PTH mRNA in all treatment groups were compared with vehicle control 

group, and a summary of statistical analysis is shown in Table 45. The mice treated with CC-325 

only had significantly decreased score at 2-, 4- and 6-hr timepoints.  The mice in the CC-325 + 
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NPS 2143 treatment group had a significant decrease in PTH mRNA H-score at 0-, 2-, and 4-hr 

timepoints.  The mice treated with NPS 2143 as a single agent had an increase in PTH mRNA  

H-Score at 2-, 4-, 6-, and 24-hr timepoints.   

Figure 36. 

Mean ± SEM of PTH m-RNA H-Score for all treatment groups. 
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Table 45. 

Mean PTH mRNA H-Score for ISH Stained Parathyroid Sections. 

Analyte Time 

Group 1 Group 2 Group 3 Group 4 

Vehicle CC-325 NPS 2143 
CC-325 + 

NPS 2143 

PTH mRNA 

(H-Score) 

0-hr 263.4 226.9 235.3 198.2*** 

2-hr 234.0 190.3* 248.0 210.5 

4-hr 230.9 174.8** 244.1 185.7* 

6-hr 222.4 182.7* 257.5 180.1* 

24-hr 205.5 183.9 242.5 184.9 

Note. * = p ≤ 0.05; ** = p ≤ 0.01; *** = p ≤ 0.001; **** = p ≤ 0.0001 

The percent change in PTH mRNA mean H-Score for each treatment group was 

calculated by comparing the difference between the mean H-Score in that group and vehicle 

control group Table 45.  The decrease in mean H-Score in CC-325 single agent treatment group 

was 14-24%, in the CC-325 + NPS 2143 group the decrease was 10-25%, and in the NPS 2143 

single agent treatment group it was decreased at baseline (11%) but that level increased after 

treatment with NPS 2143 and stayed higher until the 24-hr timepoint (increase of 6-18%),  

Figure 37.  
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Figure 37. 

PTH mRNA ISH H-Score percent difference from vehicle control group. 

 

Note. Percent PTH mRNA ISH H-Score difference from vehicle control group. The green 

horizontal line shows the vehicle control H-scores that was used to calculate the percent 

difference in other treatment groups.   

A representative of PTH mRNA ISH image for each timepoint is shown in Figure 38.  

These images are the representation of the PTH mRNA ISH staining in parathyroid for each 

treatment group at different timepoints.  The mice in vehicle control group had the highest 

staining representing the normal level of PTH mRNA in parathyroid.  The mice in the CC-325 

single agent treatment group (Group2) had decreased staining, which indicated decreased levels 

of PTH mRNA in parathyroid at all timepoints.   The mice treated with NPS 2143 as a single 

agent had moderately darker staining when compared to vehicle control group. The mice treated 

with CC-325 + NPS 2143 had similar staining intensity as CC-325 single agent treatment group, 

although the staining at 2-hr timepoint in CC-325 + NPS 2143 treatment group was slightly 

stronger than CC-325 single agent treatment group.  
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Figure 38. 

PTH mRNA In Situ hybridization staining images.  

 

 

Note. Representative of ISH stain for PTH mRNA from each treatment groups at all timepoints.  

Animals numbers are listed below each treatment group.  

Hypothesis Testing 

Hypothesis 1: Treatment of huCRBN KI mice with CC-325 will inhibit the synthesis of 

Parathyroid Hormone 

H01: After 5 days of treatment with CC-325, a single dose administration of NPS 2143 

will not increase the serum parathyroid hormone and serum iCa2+. 
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HA1: After 5 days of treatment with CC-325, a single dose administration of NPS 2143 

will increase serum parathyroid hormone and iCa2+. 

To test this hypothesis, the change in iCa2+ and PTH in vehicle and CC-325 treated 

groups were measured. Treatment with CC-325 for 5 days as a single agent and in combination 

with NPS 2143, decreased the level of iCa2+ and serum PTH by the average of 30% at 0-hr 

timepoint when compared with vehicle control group, Figure 39 and Figure 40. It was also 

shown that treatment with a single dose of NPS 2143 increased PTH and subsequently iCa2+, by 

as much as 910% and 29%, respectively.  However, the mice treated with CC-325 and then 

treated with NPS 2143 did not show significant increase in PTH or iCa2+ when compared with 

either vehicle control group or CC-325 single agent treatment group, Figure 41.   

The percent difference between serum PTH in CC-325 + NPS 2143 and CC-325 as a 

single agent is shown in Figure 41, and these data shows only a minimal increase in PTH at 2- 

and 4-hr post NPS 2143 treatment.  Clearly, this minimal increase in PTH was not enough to 

restore normoclacemia.  Statistical analysis was conducted to compare these two groups, and the 

results showed that there were no significant differences in PTH (Figure 39) and iCa2+  

(Figure 40) between mice treated with CC-325 as a single agent or CC-325 + NPS 2143.  These 

data support the null hypothesis that there were no differences in PTH and iCa2+ between 

treatment with CC-325 as a single agent or CC-325 + NPS 2143.  Therefore, it can be concluded 

that the NPS 2143 is unable to increase PTH in mice treated with CC-325 to restore 

normocalcemia.  In other words, CC-325 inhibits PTH production in mice treated with CC-325 

for at least 5 days.  
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Figure 39. 

Mean (± SD) of PTH for groups administered CC-325. 
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Figure 40. 

Mean (± SD) of iCa2+ for groups administered CC-325. 
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Figure 41. 

Percent difference in PTH between CC-325 and NPS 2143 treatment groups.  

 

Note. Percent PTH difference between CC-325 single agent, combination and NPS 2143 

treatment groups.  The blue horizontal line is the CC-325 single agent treatment group value set 

as baseline that is used to calculate the percent difference with other two treatment groups.  

  

Hypothesis 2: Treatment of huCRBN KI mice with CC-325 does not affect the secretion of 

parathyroid hormone from the parathyroid gland.   

H02: After 5 days of treatment with CC-325, with or without a single dose administration 

of NPS 2143, serum parathyroid hormone levels correlate with the intracellular 

parathyroid hormone levels.  

HA2: After 5 days of treatment with CC-325, with or without a single dose administration 

of NPS 2143, there is no correlation between serum parathyroid hormone level and 

intracellular parathyroid hormone level. 
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To test our null hypothesis, a Pearson’s correlation analysis was conducted.  The 

correlation analysis was performed between serum concentration and PTH and IHC H-scores in 

parathyroid gland.  The serum PTH concentration in each group was compared with H-score in 

that treatment group.  The Pearson coefficient determined the correlation coefficient, 

relationship, and the strength of the association between serum and intracellular PTH 

concentrations.  The correlation coefficient “r” and R2 for all treatment groups are shown in 

Table 46.  

Correlation score “r” for vehicle control group was -0.0376 (R2 = 0.0014) and the p value 

was 0.8679, indicating that there is no strong correlation between the serum PTH concentration 

and the level of PTH in parathyroid gland.  Figure 42 shows the correlation data for this 

treatment group. 

Figure 42. 

Correlation analysis of serum and intracellular PTH in vehicle treated mice. 
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The correlation score “r” for mice treated with CC-325 as a single agent was 0.6341 

(R2 = 0.4021) and the p value of 0.00047 indicating that there is a strong correlation between the 

serum and intracellular PTH.  Figure 43 shows the correlation data for this treatment group. 

Since the level of serum and intracellular PTH have correlation and the p value indicates that “r” 

is significantly different from zero (0) (meaning the correlation is not by chance) we can 

conclude that null hypothesis is true.  

Figure 43. 

Correlation analysis of serum and intracellular PTH in CC-325 treated mice. 
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The data from other treatment groups also support the null hypothesis. The correlation 

between serum and intracellular PTH in mice treated with CC-325 + NPS 2143 was also 

measured, Figure 44.  The “r” score for this group was 0.5597 (R2 = 0.3313) with a p value of 

0.0103 indicating that there is a moderate correlation between serum and intracellular PTH, 

Table 46.  Despite administration of NPS 2143, which has been shown to increase serum PTH 

and iCa2+, there is no increase in serum PTH and iCa2+in these mice.  This data further supports 
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the null hypothesis that there is no sequestration of PTH in parathyroid gland and parathyroid 

releases all the available PTH upon stimulation.   

Figure 44. 

Correlation analysis of serum PTH and intracellular PTH in CC-325 + NPS 2143 mice.
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The “r” score for NPS 2143 only treatment group, was -0.5868 (R2 = 0.3443) and the p 

value was 0.0026, indicating that there is a moderate inverse correlation between the serum and 

intracellular PTH following administration of NPS 2143, Table 48.  
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Figure 45. 

Correlation analysis of serum and intracellular PTH in NPS 2143 treated mice. 
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Table 46. 

Correlation Coefficient Values for Comparing Serum PTH and IHC H-Score for amount of PTH 

in Parathyroid Gland.   

 Group 1 Group 2 Group 3 Group 4 

Value Vehicle CC-325 NPS 2143 
CC-325 

+ NPS 2143 

r* -0.0376 0.6341 -0.5868 0.5597 

R2 0.0014 0.4021 0.3443 0.3133 

P (two-tailed) 0.8679 0.0047 0.0026 0.0103 

Number of XY Pairs 22 18 24 20 

Note. * = Pearson r 

Hypothesis 3: Treatment of huCRBN KI mice with CC-325 regulates parathyroid hormone 

production at transcription level. 

H03: Treatment with CC-325 has no effect on parathyroid hormone mRNA.  

HA3: Treatment with CC-325 decreases parathyroid hormone mRNA 
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The essence of this hypothesis is that the decrease in serum PTH is due to decrease in 

PTH synthesis or instability of PTH mRNA that could lead to decrease in PTH.  To test this 

hypothesis, the level of PTH mRNA in the parathyroid Chief cells was measured. This test was 

performed by in situ hybridization staining.  The data from this analysis is shown in Figure 36. 

The intensity of stain was scored using HALO software, the results of this analysis is show 

below in Table 47.  Our assumption was that vehicle control group represents the normal level of 

PTH mRNA in parathyroid, Figure 36.  The percent difference between CC-325 single agent 

treatment, CC-325 + NPS 2143, and NPS 2143 treatment groups is shown in Figure 47.  At 0-hr 

timepoints (1- hour post CC-325 treatment) the PTH mRNA score in CC-325 single agent 

treatment group and CC-325 + NPS 2143 was 227, and 198, respectively.  After treatment with 

NPS 2143, the level of PTH mRNA in NPS 2143 single agent treatment groups moderately 

increased, however, the increase in CC-325 + NPS 2143 was minimal.  A statistical analysis was 

performed, indicating that the only difference in PTH mRNA is between CC-325 single agent 

and NPS 2143 single agent treatment groups.  This further confirms that PTH mRNA production 

is not increasing in CC-325 + NPS treatment groups.   
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Figure 46. 

Mean ± SEM of PTH H-Scores for CC-325, CC-325 + NPS 2143, and NPS 2143 treatment 

groups. 
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Note. ** = p ≤ 0.01; *** = p ≤ 0.001 

Values of NPS 2143 and CC-325 + NPS 2143 were compared with CC-325 single agent 

treatment group.  

 

Table 47. 

Mean PTH mRNA H-Score for ISH Stained Parathyroid Sections. 

Analyte Time 

Group 1 Group 2 Group 3 Group 4 

Vehicle CC-325 NPS 2143 
CC-325 + 

NPS 2143 

PTH mRNA 

(H-Score) 

0-hr 263.4 227.1 235.2 198.3*** 

2-hr 234.0 190.5* 247.9 210.5 

4-hr 230.9 175.0** 244.1 185.7* 

6-hr 222.6 182.9* 257.6 180.2* 

24-hr 205.4 183.6 242.6* 185.0 
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Figure 47. 

Percent difference in PTH mRNA ISH H-Score between CC-325 and NPS 2143 treatment 

groups.  

 

Note. Percent difference in PTH mRNA ISH H-Score between CC-325 and CC-325 + 2143 and 

NPS 2143 treatment Groups.  The blue horizontal line is the CC-325 single agent treatment 

group value set as baseline that is used to calculate the percent difference with other two 

treatment groups.   

Hypothesis 4: After treatment with CC-325, serum FGF23 decreases.  

H04: After 5 days of treatment with CC-325, serum FGF23 concentration don’t change.    

HA4: After 5 days of treatment with CC-325, serum FGF23 concentration decreases.      

To test this hypothesis, serum samples from all treatment Groups were analyzed for 

FGF23. The results are summarized and shown in Table 41 (page 113).  To test the null 

hypothesis, we made an assumption that the values from vehicle control group provides the 

baseline for FGF23 in huCRBN KI mice. Animals treated with CC-325 and CC-325 + NPS 2143 

both had decreases in FGF23 when compared with vehicle control group. The statistical analysis 

is summarized and shown in Table 41 (page 113); these data show FGF23 levels in CC-325 and 

CC-325 + NPS 2143 treatment groups were significantly different from vehicle control group at 
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all timepoints.  The percent difference in FGF23 between vehicle and other treatment groups was 

calculated, these data are shown in Figure 48, which indicate an increase in FGF23 in NPS 2143 

alone treatment group and a decrease in FGF23 in CC-325 treatment groups (CC-325 and  

CC-325 + NPS 2143).  These results, collectively support the rejection of null hypothesis and 

acceptance of alternative hypothesis, meaning, after treatment with CC-325, the serum 

concentration of FGF23 decreases.   

Figure 48. 

Percent difference in serum FGF23 between vehicle control and other treatment groups. 

 

Note. Percent difference in serum FGF23 between vehicle control and CC-325 and  

CC-325 + 2143 and NPS 2143 treatment Groups.  The green horizontal line is the vehicle control 

treatment group value set as baseline that is used to calculate the percent difference with other 

two treatment groups.   

Summary 

This chapter presented the data and statistical analyses for each of the study objectives 

and hypotheses.  In this study, we demonstrated that degradation of GSPT1 by CC-325 in 
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increases PTH. Mice treated with CC-325 did not have an increase in serum PTH post 

administration of NPS 2143, confirming the first hypothesis.  To investigate the cause of the 

decrease in PTH after administration of CC-325 and lack of increase in PTH after administration 

of NPS 2143, additional hypotheses were tested.   

We hypothesized that the lack of increase in PTH is due to a decrease of PTH in 

parathyroid chief cells and not impaired PTH release from parathyroid. This hypothesis was 

tested by measuring and correlating extracellular (serum) and intracellular (in chief cells) PTH 

levels.  Data supported our hypothesis that the level of serum and intracellular PTH have strong 

positive correlation.  

Third, the lack of PTH production was investigated.  We hypothesized that the decrease 

in PTH production was due to decline in PTH mRNA. To test this hypothesis, the level of PTH 

mRNA in Chief cells was measured by in-situ hybridization staining.  The data supported the 

rejection of null hypothesis and supported the alternative hypothesis that there is a decrease in 

PTH mRNA in Chief cells.  

These data collectively support the conclusion that treatment with CC-325 decrease PTH 

mRNA, which leads to decline parathyroid PTH and subsequently to decrease in serum PTH that 

eventually manifest as hypocalcemia.  Treatment with NPS 2143 did not increase PTH mRNA, 

therefore was unable to restore normocalcemia in these mice.   

Finally, the concentration of FGF23 in all treatment groups was measured, with the goal 

of this measurement to determine the change in FGF23 concentration in response to change in 

PTH under hypocalcemia condition. Decreases in serum FGF23 concentration, even during the 

hyperphosphatemic state with a nadir in PTH levels, is consistent with the notion that PTH plays 

a key role in maintaining the FGF23 serum concentration. 
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CHAPTER FIVE: DISUSSION 

This chapter presents a review of the results presented in Chapter four.  The results are 

presented in the context of the listed hypotheses, clinical implications and in comparison, to the 

literature and historical reviews where available.  Limitations of the study and the 

recommendations or the future studies are also discussed in this chapter.   

Overview of the Problem 

Hypocalcemia is a potentially life-threatening condition that if not treated can be fatal.  The 

causes of hypocalcemia have been discussed in detail in Chapter Two, among them is drug 

induced hypocalcemia.  One of drugs that can cause hypocalcemia is CC-325, which is a potent 

degrader of GSPT1.  The goal of this research was to investigate the mechanism of hypocalcemia 

induced by GSPT1 degradation in mice.  Prior to conducting this experiment, several in vivo 

studies were conducted (in-house studies) to evaluate the sensitivity of the huCRBN KI mice to 

CC-325.  As the result of these studies, the magnitude of hypocalcemia could be predicted based 

on the dose and duration of CC-325 treatment in huCRBN KI mice.  The data from in-house 

investigative studies revealed that despite hypocalcemia in mice, PTH is not increased.  Calcium 

homeostasis is normally maintained by the parathyroid gland, kidney, bone, and intestine, with 

multiple points of regulation.  The parathyroid gland responds to changes in iCa2+ concentration 

in the extracellular space and alters the secretion of PTH (Hakami & Khan, 2019). The 

concentration of PTH in plasma regulates calcium resorption from bone, calcium reabsorption by 

the renal tubules, and vitamin D activation in the kidney, which promotes calcium and phosphate 

absorption in the intestines (M. Lee & Partridge, 2009). Therefore, the lack of increase in PTH in 

mice treated with CC-325 was a significant finding and triggered the investigation into the 

following questions:  
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1. Does GSPT1 degradation in huCRBN KI mice inhibits PTH increase even when 

stimulated with potent negative allosteric modulator of CaSR?  

2. Does GSPT1 degradation in huCRBN KI mice cause sequestration of PTH in 

parathyroid?  

3. Does GSPT1 degradation in huCRBN KI mice affect PTH mRNA level in parathyroid? 

4. Does decrease in PTH affect the serum concentration of FGF23 in huCRBN KI mice?  

Discussion of the Studies 

Human CRBN KI mice are transgenic mice that were produced by Celgene Corporation 

in collaboration with a contract research organization. These mice are not available to researcher 

outside of the Celgene organization therefore there is little publication on the use of these mice in 

research.  Internally, Celgene scientists have used these mice for several years and there are 

internal data on the characteristics and biology.   Several studies have been conducted to 

investigate the utility of these mice for GSPT1 related hypocalcemia.  

Pilot Study 

The purpose of the pilot study was two-fold: first, to find the tolerable dose of NPS 2143 

in huCRBN KI mice that can cause measurable increases in PTH and iCa2+, and second, to 

determine the dynamic range for PTH and iCa2+ in these mice.  To find the dynamic range, we 

also used NPS R-568 to induce hypocalcemia by decreasing PTH in these mice.  Since there 

were no published data on use of these compounds in huCRBN KI mice, the pilot study was 

essential to obtaining this information. The selection of formulation and the initial dose of the 

NPS 2143 in mice was based on the published data (Gowen et al., 2000), however based on our 

initial pilot data, the dose of NPS 2143 for the main study was optimized.  The magnitude of 

increase in PTH and iCa2+ concentrations in the pilot were consistent with the published data 
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(Hannan et al., 2015) however, the actual concentrations for PTH were different.  This could be 

due to several factors including the source of NPS 2143, the strain of mice, the method of PTH 

measurement and the study design (i.e. blood collection timepoints in study). The source of NPS 

2143 for this experiment was Millipore Sigma, whereas the source of NPS 2143 in the Gowen et 

al., 2000 study was NPS pharmaceuticals.  The bleeding of mice in this experiment was not 

serial, whereas the data from the literature was from serial bleeding. Finally, and most important 

is that huCRBN KI mice were used in this experiment, which had no precedent prior to this pilot 

study.   

Data from pilot study revealed an approximately 18-fold increase in PTH over vehicle 

control group at peak, which was 2-hr after the administration of NPS 2143.   Ionized and total 

calcium were increased and peaked at 2-hour postdose.    There were no changes in electrolytes 

in the NPS 2143 treatment group when compared with vehicle control group.  These data showed 

that NPS 2143 at 200 mg/kg can cause an acute increase PTH and iCa2+ in huCRBN KI mice. 

Interference studies 

The purpose of the interference studies was to investigate the effects of test articles, CC-325 and 

NPS 2143, on PTH and FGF23 ELISA assays when they are present in high concentrations in 

serum.  Data from the interference studies showed that low concentrations of test articles had 

minimal effects on the serum PTH and FGF23 measurement.   

At the time of this interference study, no huCRBN KI mouse Pharmacokinetic (PK) data was 

available to guide the concentration selection for the interference study, therefore, a wide range 

of concentrations were selected.  The selected range of 0.61 to 20 µM was based on projected 

high and low concentration of each test article in huCRBN KI mice.  Data from the PTH assay 

showed dose dependent negative effect on the serum PTH at all CC-325 concentrations except 
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1.25 µM, which has a positive effect of 7%.  The highest and the lowest effects were the 

decrease of 8% and 2% in serum PTH measurement, which were observed at 20 and 0.61 µM 

respectively.  These effects, particularly at lower concentration of CC-325, were close to the 

PTH inter-assay CV, which was 5.5%, and are not considered significant.   

The effect of NPS 2143 on the PTH assay was limited to 5% decrease in serum PTH 

measurement at all NPS 2143 concentrations except 1.25 µM, which resulted in the increase of 

5% in serum PTH.  Overall, the effect of NPS 2143 on PTH measurement was ±5%, which was 

within the assay CV.   

The effects of test articles on the FGF23 assay was slightly different than the PTH assay.  

The CC-325 in the serum resulted in 1-9% decrease in serum FGF23 at the concentration of 0.61 

to 20 µM.  The effects were not dose dependent, since the highest negative effect was observed 

at 0.61 and 20 µM and the lowest effect at 2.5 µM.  The average effect of the concentrations 

≤2.5 µM was 4.8%. Considering that the inter-assay CV for FGF23 was 4.4%, the impact of the 

CC-325 on serum FGF23 measurement was considered minimal.   

The effect of NPS 2143 on the serum FGF23 measurement was more pronounced and not 

dose proportional.  NPS 2143 had negative effect of 2 to 17 % on serum FGF23 measurement 

between 0.61 to 20 µM concentrations.  One potential contributing factor for this large negative 

effect was shortage of naïve serum for testing for this assay.  Due to this shortage, the results for 

naïve serum and naïve serum + DMSO from the adjust wells (A&B 3 and 4) were used for A&B 

5 and 6 wells. This duplication of data from one column to another might have contributed to 

large effect of NPS 2143 on serum FGF23 measurement.   Overall, the average negative effect 

for the four concentrations between 1.25 to 10 µM was 3.7%, which was below the inter-assay 
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CV of 4.4%.    Based on these data, it is reasonable to conclude that the lower concentrations of 

NPS 2143 had minimal effect of the serum FGF23 measurement.    

Main Study 

Clinical findings 

The goal of this experiment was to investigate the mechanism of hypocalcemia observed 

in huCRBN KI mice after administration of CC-325, a potent GSPT1 degrader.  To investigate 

this mechanism, an in vivo experiment was designed and conducted.  Samples from this 

experiment were collected at endpoints listed in the method section.  The dose of CC-325 for the 

experiment were selected based on the historical in-house data, which showed that the dose of 

15 mg/kg BID for 5 days would be tolerated, but cause hypocalcemia.  As expected, moderate 

body weight loss was observed in the CC-325 treatment groups, however all animals tolerated 

the treatment until schedule necropsy.  The body weight in the CC-325 treatment groups, either 

as a single agent or combination with NPS 2143 was significantly decreased on Days 3 through 

5.  Since animals treated with NPS 2143 as a single agent were only treated on Day 5, they were 

weighed only on that day.  Their body weight on Day 5 was consistent with vehicle control 

group.  

Exposure of CC-325 and NPS 2143 in mice 

The exposures of CC-325 and NPS 2143 in mice were consistent.  The exposures of  

CC-325 and NPS 2143 were measured both as single agent and in combination group with each 

other.  On Day 5, CC-325 was dose one hour prior to NPS 2143 administration, therefore the 

CC-325 TK timepoints were one hour longer than the NPS 2143 TK timepoints.  The exposure 

(AUC0-25) of CC-325 in the mice treated with CC-325 as a single agent was 10.1 µM.hr, while 

CC-325 exposure in the combination groups was slightly higher at 14.7 µM.hr.  Although the 
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exposure in the combination group was 50% higher than the CC-325 as a single agent, this 

increase was not considered significant.  Several factors might have contributed to the exposure 

difference between these two treatment groups.   They include small n size for each timepoint, 

animal to animal variation, lack of serial bleeding in the TK groups, and the analytical 

variability.  Although the effects of drug-drug interaction could not be ruled out, the magnitude 

of difference between these two exposures did not point to drug-drug interaction as a cause of 

increase in exposures in the combination group.   

The exposure of NPS 2143 in huCRBN KI mice both as a single agent and combination 

with CC-325 was measured.  The exposure (AUC0-24) of NPS 2143 as a single agent was 

6.2 µM.hr and 16.6 µM.hr in combination group. Similar factors that might have contributed to 

CC-325 exposure differences could have contributed to the NPS 2143 exposure differences as 

well.  However, the NPS 2143 exposure in combination groups was roughly 3-fold higher than 

NPS 2143 as a single agent, therefore the drug-drug interaction could not be ruled out.  In order 

to investigate the drug-drug interaction between these two molecules, additional in vitro assays 

must be conducted.  These assays include cytochrome p450 inhibition assay, which could reveal 

if the NPS 2143 metabolism was affected.  Additional assays such as transporters function 

assessment could be performed to investigate the absorption or the clearance of the NPS 2143 in 

the combination group.  The increase in the NPS 2143 exposure in the combination group might 

have resulted in increased pharmacological effects of NPS 2143 in that group, however, we were 

not able to measure that increase in our experiment.  

Accuracy of total calcium measurement  

The albumin concentration had no effect of calcium concentration.  The degree of change 

in ionized and total calcium was consistent during the study.  There was no significant change in 
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albumin or total protein in any of the treatment groups, indicating that the change in calcium 

concentration was real and not affected by albumin concentration. The percent drop in calcium 

concentration in this experiment was consistent with the drop in the previous in-house studies 

with CC-325.   

The impact of protocol deviation on study integrity 

As noted earlier, there was a protocol deviation, which resulted in administration 

120 mg/kg of NPS 2143 instead of 200 mg/kg as described in the protocol. However, since 

increase in PTH and iCa2+ in this experiment was similar to the pilot study, it can be concluded 

that the protocol deviation had no impact on the integrity of the study.   

The impact of parathyroid necrosis on PTH production 

Histologic evaluation of the parathyroid gland revealed minimal to mild necrosis in mice 

treated with CC-325.  It is feasible that single cell necrosis in parathyroid had some impact on 

PTH production in these mice.  However, the immunohistochemistry staining showed that there 

were still many viable cells in parathyroid.    

Hypotheses  

Effects on PTH 

After testing hypotheses 1, 2, and 3, it was concluded that treatment with CC-325 caused 

decrease in serum PTH and subsequently iCa2+ because of reduction in PTH synthesis and not 

sequestration of PTH in parathyroid.   Analysis of the data revealed that the treatment with  

CC-325 as a single agent or in combination with NPS 2143 resulted in decreased serum PTH and 

iCa2+ in mice; however, there was minimal differences in PTH and iCa2+ between these two 

treatment groups.  The serum PTH and iCa2+ in the CC-325 only treatment group were 
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consistently lower than vehicle control group at all measured timepoints, however, mice treated 

with CC-325 + NPS 2143 had minimal increase in PTH and iCa2+ at the 2- and 4-hr timepoints 

when compared with the CC-325 only treatment group, Figure 23 (page 105) and Figure 29 

(page 110).  The increase in serum PTH in the CC-325 + NPS 2143 treatment group over the 

CC-325 only treatment group at 2-hr and 4-hr timepoints were 79% and 75%, respectively.  

Based on the TK data, Table 29 (page 94), the Tmax for NPS 2143 in mice was at 2-hr postdose, 

which corresponded with the slight increase in serum PTH and iCa2+ in the combination group.  

However, at the same timepoint, 2-hr postdose, the level of serum PTH and iCa2+ in the NPS 

2143 only treatment group was significantly higher than the vehicle control or CC-325 only 

treatment group.   The increase of PTH in the NPS 2143 only treatment group was 1900% over 

the CC-325 only or 1800% over the CC-325 + NPS 2143 treatment groups. These data show that 

CC-325 inhibited the increase in PTH even when mice were treated with a potent negative 

allosteric modulator of CaSR. To investigate the cause of this inhibition, we performed further 

analysis to compare the level of serum with intracellular PTH.   

The data from serum and intracellular PTH (IHC H-Scores) were analyzed.  A correlation 

analysis was performed, and results are shown in Figure 43 and Figure 45.  The Pearson 

correlation analysis for serum and intracellular PTH in CC-325 only treatment group showed that 

there was a strong positive correlation between the serum and intracellular PTH in this treatment 

group,  meaning that the reason for decrease in serum PTH was decrease in PTH synthesis and 

not sequestration in parathyroid.  Similar correlation analysis was performed for CC-325 + NPS 

2143 treatment group, which showed that even after stimulation of parathyroid gland with NPS 

2143, the level of serum and intracellular PTH had moderate positive correlation.  These two 

analyses collectively, indicate that lack on increase in PTH in CC-325 treated mice was because 
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of decrease in PTH synthesis in both unstimulated and stimulated parathyroid and not 

sequestration of PTH in parathyroid.  It is important to emphasize that when correlating a 

quantitative value, such as serum PTH, with semi-quantitative value, such as PTH H-scores, the 

accuracy of the correlation could be impacted, however, trend of correlation and the 

interpretation of the data would not change.   

A correlation analysis for the vehicle and NPS 2143 only treatment groups was also 

performed, these data are shown in Figure 42 and Figure 45, respectively.  The analysis of the 

vehicle control group showed very weak correlation between serum and intracellular PTH, which 

was likely due to the high variability in the serum PTH.  Review of serum PTH concentrations, 

Figure 29 (page 110), and intracellular PTH H-Scores, Figure 32 (page 114), for the vehicle 

control group revealed that serum PTH had large variability in comparison with the intracellular 

PTH H-scores.  Therefore, the lack of correlation in the vehicle control groups can be attributed, 

at least partially, to serum PTH variability.   

The serum and intracellular PTH in the NPS 2143 only treatment group had negative 

correlation.  This was due to significant increase in serum PTH in absence of change in 

intracellular PTH H-scores, except for minimal decrease at 2- and 4-hr post dose.  This 

correlation data suggests that the parathyroid gland of these mice were generating and releasing 

significant amount of PTH, therefore serum PTH was high while intracellular PTH was roughly 

intact.    

These data collectively indicate that NPS 2143 can stimulate the production of PTH and 

CC-325 can inhibit production.  Animals treated with CC-325 followed by NPS 2143 were 

unable to synthesize PTH, therefore decrease in serum PTH in these animals is due to lack of 

PTH synthesis and not sequestration in parathyroid.   
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To further investigate the cause of decrease in PTH synthesis in CC-325 treated mice, the 

level of PTH mRNA in parathyroid was measured.   The data from this analysis is shown in 

Figure 36 (page 120) and Figure 46 (page 132).   Similar to IHC H-Scores, the values of ISH H-

scores were semi-quantitative.  As discussed earlier, this could certainly reduce the accuracy of 

the analysis.  The Day 5 (0-hr) timepoint data, Figure 36 (page 120), shows the degree of 

variability in these mice.  At 0-hr, the vehicle treated mice and NPS 2143 mice had different 

level of PTH mRNA H-score, although at 0-hr timepoint, the NPS 2143 mice were not dosed and 

they were sacrificed while naïve.  Also, at 0-hr timepoint, the H-score for NPS 2143 mice was 

the same as CC-325 treated mice, which again, the NPS 2143 mice were naïve at 0-hr while the 

CC-325 mice were treated for 5 days.  This level of variability from a newly developed semi-

quantitative PTH mRNA ISH assays was not surprising.  However, at the later timepoints, as the 

level of drug concentrations increased, the difference in the H-scores became more pronounced. 

The level of PTH mRNA in the NPS 2143 only treatment group was not significantly changed at 

2- and 4-hr, but it was minimally increased at 6-hr.   The lack of increase in PTH mRNA while 

there was significant synthesis and release of PTH from parathyroid during the first few hours 

after compound was onboard can be explained by possible PTH mRNA stabilization during the 

treatment period.  In vitro studies have shown that calcium and phosphate determine PTH 

mRNA stability through the balance between stabilization and degradation of the factors that 

interact with PTH mRNA (T. Naveh-Many & Nechama, 2007).  The R-568, a positive allosteric 

modulator of CaSR can significantly decrease in PTH, and this effect was shown to be 

contributed by two factors, acceleration of transcription degradation and reduction in gene 

transcription (Ritter et al., 2008). It is possible that NPS 2143, a negative allosteric modulator of 
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CaSR, increases PTH by stabilizing mRNA at 2- and 4-hr and also increases transcription of 

PTH mRNA at 6-hr timepoint.   

Further analysis of the data, shown in Figure 46 (page 132), also revealed significant 

decrease in PTH mRNA in CC-325 treatment mice, with or without NPS 2143, when compared 

with NPS 2143 single agent treatment group.  This data revealed that even stimulation by NPS 

2143 cannot increase transcription of PTH in mice treated with CC-325.  Therefore, the null 

hypothesis was rejected, and alternative hypothesis was accepted that CC-325 decreases PTH 

mRNA.  

Effects on FGF23 

In this experiment, we observed lower serum FGF23 concentration in the CC-325 

treatment groups.  The FGF23 secretion is driven by PTH, hyperphosphatemia and 1,25(OH)2D. 

In this experiment the decrease in FGF23 in CC-325 treated mice is likely driven by decrease in 

decrease in PTH and likely decrease in 1,25 (OH)2D, which was not measured in this 

experiment. The change of FGF23 during hyperphosphatemia and hyperparathyroidism has been 

extensively reported in the literature; however, its biological effects during hypocalcemia with 

decreased levels of PTH has yet to be elucidated.  In this experiment, we measured the levels of 

FGF23 during hypocalcemia and hypoparathyroidism conditions.  FGF23 plays an important role 

in phosphate homeostasis and it has positive correlation with calcium and negative correlation 

with PTH.  The FGF23 increases the output and decreases the intake of phosphorus by directly 

increasing phosphaturia and indirectly decreasing intestinal phosphorus absorption by decreasing 

1,25(OH)2D levels. It has been well established that FGFR1 and α-Klotho are present on the 

surface of parathyroid, therefore binding of FGF23 to its binding site and α-Klotho suppresses 

both PTH secretion and PTH gene expression. Conversely, increase in PTH increases FGF23 
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transcription, although it would take several days to manifest (Ben-Dov et al., 2007).  Injection 

of mice with PTH, increases FGF23 mRNA levels in mouse femurs, however, intact FGF23 was 

rapidly degraded within a few hour through an unidentified mechanism (Knab et al., 2017).  In 

this experiment, the serum concentration of 1,25(OH)2D was not measured, however, it can be 

predicted that decreased in PTH would cause decrease in 1,25(OH)2D production.  As described 

earlier, FGF23 levels directly correlate with calcium and indirectly with PTH, which under 

hypocalcemia condition (low calcium and high PTH) it hold true.  Here, in this experiment, the 

question is what happens to levels of FGF23 if there is hypocalcemia and low PTH 

concentration. As shown in Figure 31 (page 113), the level of FGF23 decreases even under the 

hyperphosphatemia and hypoparathyroidism.  In a study by (Rodriguez-Ortiz et al., 2012), 

injection of 1,25(OH)2D into parathyroidectomized rats with decreased serum calcium and 

FGF23 and increased phosphate normalized FGF23 levels, indicating that FGF23 concentrations 

are effected by other hormones.  In an experimental model of primary hyperparathyroidism, 

FGF23 is increased, suggesting that PTH may directly increase FGF23 and may also increase 

FGF23 through stimulation of 1, 25(OH)2D (Rodriguez-Ortiz et al., 2012).  Based on this 

information, it is reasonable to predict that mice treated with CC-325 are likely 1, 25(OH)2D 

deficient, although measurement of 1, 25(OH)2D was not feasible in this experiment.   

Conclusion 

In this study, it was shown that degradation of GSPT1 causes hypocalcemia by 

decreasing PTH.  The decrease in PTH was because of decreased PTH synthesis due to 

decreased PTH mRNA.  Additionally, decreased PTH caused a decrease in FGF23, which had no 

impact on bone resorption and restoration of calcium homeostasis. 
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Limitation of the Study 

This study was affected by design and analytical limitations. The most important design 

limitation was the number of animals in each treatment group.  This was a large experiment with 

over 115 mice in 7 groups; however, the n size for each toxicological assessment timepoint was 

only 5, and the size of the groups for TK timepoints was even lower at 3.  Although these n sizes 

were sufficient for the statistical analysis, larger n sizes could provide more robust data analysis, 

particularly for some of the semi-quantitative assays such as IHC and ISH H scores.  Similarly, 

the larger n size for TK timepoints could provide tighter data and reduced SD.    

Another design challenge was limitation of ISH probe for PTH mRNA due to limited 

availability of the probes, only n=3 (3 of 5) from each treatment group was analyzed, this type of 

sampling could introduce sampling bias in the data analysis. However, based on the small 

standard deviation in the results, it can be concluded the effect of sampling bias was very low on 

the data analysis and interpretation.   

Additional limitation of this experiment was the small blood volume from mice.  

Although, all the endpoints of this experiment were measured successfully, the lack of spare 

serum or plasma samples made it impossible to repeat or confirm an analysis.  Additionally, it 

has been reported that PTH has longer stability in EDTA plasma, however, due to blood volume 

limitation, only serum was collected for PTH analysis.   

An analytical limitation was inability to measure 1,25(OH)2D in serum Currently there is 

no commercial assay for measuring mouse 1,25(OH)2D; however, the LC/MS method could be 

an option for analysis, but it was not explored Measuring the change in vitamin D in this 

experiment would provide important information in the role of vitamin D in restoring calcium 

homeostasis after treatment with GSPT1 degrader.  



www.manaraa.com

154 

Another significant limitation was the histological processing of parathyroid gland.   

Mouse parathyroid glands are extremely small and difficult to identify and section.  The 

histology laboratory in charge of processing of parathyroid glands was unable to identify and 

section 15 (15 out of 100) parathyroid. However, since these 15 parathyroid were missing from 

various treatment groups and timepoints, the impact on the data analysis was minimal.   

Recommendation for Future Studies 

Although this study answered several important questions, many more questions remain 

to be answered.  Data from this study guide us toward several important research questions, 

including the role and the level of GSPT1 degradation in other tissues in the mice (i.e. kidney). 

In kidney, PTH stimulates calcium reabsorption in the distal tubule by activating specific ion 

channels and increases phosphate excretion in the proximal tubule mainly by regulating sodium-

coupled cotransporters. It also enhances intestinal calcium and phosphate uptake by stimulating 

the conversion of 25-hydroxyvitamin D3 to 1, 25-dihydroxyvitamin D3.  The PTH1R is 

expressed in proximal tubules, cortical ascending limbs, and distal convoluted tubules and it 

internalize the Na-Pi cotransporter and inhibits phosphate absorption.  Therefore, it is important 

to investigate the role of GSPT1 degradation in the kidney. Additionally, assessing the effects of 

GSPT1 degradation on calcium and vitamin D receptors in parathyroid and kidney could provide 

more insight into mechanism of hypocalcemia.  

It is also important to measure the serum calcitonin and assess the effects of GSPT1 

degradation on thyroid function and calcium homeostasis.  It is also critical to understand the 

impact of long-term FGF23 suppression on bone resorption and ossification.    
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Finally, further investigation into the mechanism of PTH mRNA decrease could provide 

insight into understanding the mechanism of hypocalcemia caused by GSPT1 degradation in 

huCRBN KI mice.    
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APPENDIX A.  

ICa2+ And Electrolytes 

Principles of Measurement Performed by Stat Profile Prime CCS Analyzer. 

Measuring Technology: Ten Planar Sensors (Na, K, Cl, iCa, pH, PCO2, PO2, Glucose, Lactate, 

Hematocrit) in a Micro Sensor Card 

Principle of Measurement (Sodium, Potassium, Chloride, and Ionized Calcium) 

These parameters are measured by the Ion-Selective Electrode (ISE), which selectively measures 

the activity of ionic species. When the ISE is contacted with a sample, potential is developed. 

The potential is proportional to the logarithm of the ionic activity (ai) and is measured versus a 

reference electrode.  This relationship can be described by the Nernst equation.   

 Principle of pH Measurement 

pH is measured using a hydrogen ion selective membrane. One side of the membrane is in 

contact with a solution of constant pH. The other side is in contact with a solution 

of unknown pH. A change in potential develops which is proportional to the pH difference of 

these solutions. This change in potential is measured against a reference electrode of constant 

potential. The magnitude of the potential difference is a measured, and is used to calculate the 

pH of the unknown solution.  

Ionized Calcium Normalized to pH 7.4 

The activity and concentration of ionized calcium in whole blood is pH dependent. In vitro, a pH 

increase of 0.1 unit decreases the ionized calcium level by 4 to 5% (conversely, a pH decrease 

has an equal but opposite effect). The sample of choice for ionized calcium determination is 

anaerobically collected whole blood. If an anaerobic sample is not available, by measuring the 

actual pH of the sample at which the ionized calcium concentration was measured, then 

normalized ionized calcium can be calculated. Normalized ionized calcium represents what the 

ionized calcium concentration would have been if the initial pH was 7.40 (the midpoint of the pH 

reference range).  

The equation used for this calculation is as follows: 

log [iCa] 7.4 = log [Ca++]X - 0.24 (7.4 - X)      

where X = measured pH of the sample 

[iCa]X = ionized calcium concentration in the sample 

at the measured pH 

[iCa] 7.4 = normalized concentration of ionized calcium 

at pH 7.40 

The equation assumes a normal concentration of total protein 

and may be used for measured values between pH 7.2 and 7.6. Between pH 6.9 and 7.2 and 

between pH 7.6 and 8.0, modified forms of the equation are used. Normalized ionized calcium 

values for samples with pH outside the range of pH 6.9 to pH 8.0 are not displayed. 
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Specimen Requirement 

Lithium heparin whole blood samples from syringes, open tubes, small cups, and capillary tubes 

can be used on the Stat Profile Prime CCS Analyzer. The minimum sample size for analysis is 

100 µL. 

Quality Control 

Healthcare facilities should follow federal, state, and local guidelines for testing quality control 

materials. At a minimum, Nova Biomedical recommends that each laboratory performs 

the following minimum QC procedures (Auto-Cartridge QC or External Ampule QC) on each 

analyzer: 

•  During each 8 hours of testing, analyze one level of Control. 

•  Analyze all 3 levels during each day of operation. 

•  After performing system maintenance, follow good laboratory practice guideline for 

performing quality control analysis.  

Quality Control Within Run Precision Performance  

The protocol consisted of 20 replicates per run for each of 3 different quality control materials on 

each of 3 Stat Profile Prime CCS Analyzers. The average, SD, CV%, and N for each analyzer for 

each QC level and parameter was calculated. The pooled average, SD, CV%, and N from all 3 

analyzers for each QC level and parameter was calculated. 

Precision 

QC and linearity solution total imprecision performance estimates of the total imprecision were 

determined for the Stat Profile Prime CCS analyzers by analyzing the following solutions in 

duplicate over a period of 20 days; 2 runs per day for a total of 40 runs.  

•  Quality Control Material – 3 levels for each parameter in QC mode. 

•  Linearity Standards – 5 levels for each parameter in QC mode. 

Whole Blood Run-to-Run Precision Performance Estimates of the whole blood run-to-run 

precision were determined in Syringe Mode and Capillary Mode. For each run, the whole blood 

was analyzed in triplicate on 3 Stat Profile Prime analyzers over 10 separate runs for a total of 

30 results per analyzer. Statistical analysis for each analyzer for both Syringe Mode and 

Capillary Mode was calculated.  Tables below show the precision data for each analyte.   
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APPENDIX B.  

Albumin 

Principles of The Assay 

For the quantitative determination of albumin concentration in serum and lithium heparin plasma 

using the ACE Axcel® Clinical Chemistry Systems.  

The ACE Albumin Assay is based on the Doumas and Briggs modification of the bromcresol 

green (BCG) dye method.  

albumin + BCG dye (yellow)  BCG-albumin complex (green) 

Reaction: An increase in absorbance of the green colored complex is directly proportional to the 

albumin concentration measured bichromatically at 629 nm/692 nm. 

Specimen Requirement 

• Use clear, unhemolyzed serum. 

• Specimen stable at 4°C for up to 72 hours and frozen at -20°C for 6 months or indefinitely at -

70°C. 

•  

Quality Control 

• Alfa Wassermann Level 1 and Level 2 Chemistry Controls were used for QC check.  

• Controls were run when a new reagent lot is loaded and/or recalibration of the test was 

performed. 

• Control values outside of acceptable limits were troubleshoot prior to any sample analysis.   

• The manufacturer mean values and expected ranges will be used for quality control. We 

recognize that our laboratory’s mean for this analyte may not duplicate the mean value printed 

on the manufacture’s insert, however, our control values must fall within the expected range.  

Sensitivity  

Analytical Sensitivity - determined on the clinical chemistry systems according to CLSI Protocol 

EP17-A provided by the manufacturer.  

 ACE Axcel 

LoD (g/dL) 0.09 

LoQ (g/dL) 0.09 
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Precision 

Precision - determined on the clinical chemistry systems according to CLSI Protocol EP5-A2 

provided by the manufacturer.  

System Sample 

Mean  

(g/dL) 

Within Run Total 

SD CV % SD CV % 

ACE Axcel  

(n = 22 days) 

1 2.3 0.04 1.7 0.05 2.0 

2 4.0 0.04 0.9 0.06 1.4 

3 5.6 0.05 1.0 0.07 1.2 

4 4.3 0.05 1.1 0.06 1.4 

Limitation of The Assay 

The performance of the Albumin Assay has been verified at 37°C using cuvettes and reagents 

manufactured exclusively for Alfa Wassermann Diagnostic Technologies, LLC. 

• Do not use hemolyzed samples. 

• A comprehensive list of drugs and other substances which can affect albumin concentration in 

serum is given by Young, et al. 

Additional limitations on Specimen Collection, Storage and Handling and Performance 

Characteristics are listed in the package insert.  

Total Protein 

Principles of The Assay 

For the quantitative determination of total protein concentration in serum and lithium heparin 

plasma using the ACE Axcel® Clinical Chemistry Systems. 

The ACE Total Protein Assay is a modification of Weichselbaum’s biuret reagent. 

Weichselbaum introduced the use of sodium potassium tartrate, as an alkaline stabilizer, and 

potassium iodide to prevent auto reduction of the copper sulfate. 

protein + Cu2+  Alkaline Medium  Cu-protein complex (violet) 

Reaction: An increase in absorbance of the violet colored complex is directly proportional to the 

total protein concentration measured bichromati-cally at 544 nm/692 nm. 

Specimen Requirement 

• Use clear, unhemolyzed serum. 

• Specimen stable at 4°C for up to 72 hours and frozen at -20°C for 6 months or indefinitely at -

70°C. 

Quality Control 

• Alfa Wassermann Level 1 and Level 2 Chemistry Controls will be used for QC check.  

• Controls were run when a new reagent lot was loaded and/or recalibration of the test is 

performed. 
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• Control values outside of acceptable limits were troubleshoot prior to any sample analysis.   

• The manufacturer mean values and expected ranges were used for quality control. We 

recognize that our laboratory’s mean for this analyte may not duplicate the mean value printed 

on the manufacture’s insert, however, our control values fell within the expected range.  

Sensitivity  

Analytical Sensitivity - determined on the clinical chemistry systems according to CLSI Protocol 

EP17-A provided by the manufacturer.  

 ACE Axcel 

LoD (g/dL) 0.15 

LoQ (g/dL) 0.31 

Precision 

Precision - determined on the clinical chemistry systems according to CLSI Protocol EP5-A2.8  

System Sample 

Mean  

(g/dL) 

Within Run Total 

SD CV % SD CV % 

ACE Axcel  

(n = 22 days) 

1 3.5 0.08 2.4 0.10 2.9 

2 6.9 0.11 1.6 0.13 1.9 

3 10.0 0.08 0.8 0.10 1.0 

4 6.6 0.10 1.4 0.11 1.6 

Limitation of The Assay 

The performance of the Total Protein Assay has been verified at 37°C using cuvettes and reagents 

manufactured exclusively for Alfa Wassermann Diagnostic Technologies, LLC. 

• Do not use hemolyzed samples. 

• Extensive hemolysis should be avoided because the proteins released will react with ACE 

Total Protein Reagent. 

• A comprehensive list of drugs and other substances which can affect total protein concentration in 

serum is given by Young, et al. 

Additional limitations for Specimen Collection, Storage and Handling and Performance 

Characteristics are listed in package insert.  

Phosphorus 

Principles of The Assay 

ACE Inorganic Phosphorus U.V. Reagent is intended for the quantitative determination of 

inorganic phosphorus concentration in serum and lithium heparin plasma using the ACE Axcel® 

Clinical Chemistry Systems  
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The ACE Inorganic Phosphorus Assay is based on the method of Daly and Ertingshausen with 

modifications by Amador and Urban that measures the unreduced phosphomolybdate complex in 

the ultra-violet (U.V.) range. 

ammonium molybdate + inorg. phos H2SO4  phosphomolybdate 

complex (unreduced) 

Reaction: An increase in absorbance is directly proportional to the phosphorus concentration 

measured bichromatically at 340 nm/378 nm. 

Specimen Requirement 

Serum/ Plasma Samples 

• Separate serum/ plasma from red blood cells within 1 hour of collection because red blood 

cells contain organic phosphates, which can leak into serum as inorganic phosphorus. 

• Use clear, unhemolyzed serum or lithium heparin plasma. 

• Specimen stable for 4 days at 4-8°C and for 1 year at -20°C. 

Quality Control 

• Alfa Wassermann Level 1 and Level 2 Chemistry Controls will be used for QC check.  

• Controls were run when a new reagent lot was loaded and/or recalibration of the test is 

performed. 

• Control values outside of acceptable limits were troubleshoot prior to any sample analysis.   

• The manufacturer mean values and expected ranges were used for quality control. We 

recognize that our laboratory’s mean for this analyte may not duplicate the mean value printed 

on the manufacture’s insert, however, our control values fell within the expected range.  

Sensitivity  

Analytical Sensitivity - determined on the clinical chemistry systems according to CLSI Protocol 

EP17-A provided by the manufacturer.  

 ACE Axcel 

Serum 
LoD (mg/dL) 0.07 

LoQ (mg/dL) 0.22 

Precision 

Precision - determined on the clinical chemistry systems according to CLSI Protocol EP5-A2.11  
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Serum Assay 

System Sample 

Mean  

(g/dL) 

Within Run Total 

SD CV % SD CV % 

ACE Axcel  

(n = 21) 

1 3.8 0.06 1.6 0.07 1.7 

2 8.2 0.12 1.4 0.13 1.5 

3 12.6 0.24 1.9 0.24 1.9 

4 4.5 0.08 1.7 0.11 2.5 

Limitation of The Assay 

The performance of the Inorganic Phosphorus Assay has been verified at 37°C using cuvettes and 

reagents manufactured exclusively for Alfa Wassermann Diagnostic Technologies, LLC. 

• Phosphorus contamination (usually from detergents) will adversely affect this assay. 

Disposable plasticware is highly recommended. 

• Do not use icteric, lipemic or hemolyzed samples. 

• A comprehensive list of drugs and other substances which can affect inorganic phosphorus 

concentration in serum/ plasma is given by Young, et al. 

Additional limitations for Specimen Collection, Storage and Handling and Performance 

Characteristics are listed in package insert. 

Calcium 

Principles of The Assay 

The ACE Calcium-Arsenazo Assay is a dye binding procedure in which calcium forms a blue-

purple complex with Arsenazo III under acidic conditions.1  

For the quantitative determination of calcium concentration in serum and lithium heparin plasma 

using the ACE Axcel® Clinical Chemistry Systems. This test is intended for use in clinical 

laboratories and physician office laboratories. 

Calcium + Arsenazo III Acidic Medium Calcium-Arsenazo III Complex 

Reaction: An increase in absorbance is directly proportional to the calcium concentration 

measured bichromatically at 647 nm/692 nm. 

Reagent Composition 

Active Ingredients Concentration 

Arsenazo III ≥ 0.15 mmol/L  

Buffer and Surfactant 

Specimen Requirement 

• Blood collection tubes MUST be free of calcium. 

• Obtain blood with minimum venous occlusion and without exercise or after restoring 

circulation for > 1 minute. 
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• Separate serum/ plasma from cells as soon as possible after collection because red cells can 

absorb calcium. 

• Use clear, unhemolyzed serum or lithium heparin plasma. 

• Specimen stable for 7 days at 20-25°C, 3 weeks at 4-8°C, and 8 months at -20°C. 

Quality Control 

• Alfa Wassermann Level 1 and Level 2 Chemistry Controls will be used for QC check.  

• Controls were run when a new reagent lot was loaded and/or recalibration of the test is 

performed. 

• Control values outside of acceptable limits were troubleshoot prior to any sample analysis.   

• The manufacturer mean values and expected ranges were used for quality control. We 

recognize that our laboratory’s mean for this analyte may not duplicate the mean value printed 

on the manufacture’s insert, however, our control values fell within the expected range.  

Sensitivity  

Analytical Sensitivity - determined on the clinical chemistry systems according to CLSI Protocol 

EP17-A.10  

  ACE ACE Alera ACE Axcel 

Serum 
LoD (mg/dL) 0.13 0.11 0.11 

LoQ (mg/dL) 0.20 0.23 0.20 

Precision 

Precision - determined on the clinical chemistry systems according to CLSI Protocol EP5-A2.9  

Serum Assay 

System Sample 

Mean  

(g/dL) 

Within Run Total 

SD CV % SD CV % 

ACE Axcel  

(n = 21 days  

minimum) 

1 6.5 0.15 2.3 0.15 2.3 

2 9.7 0.13 1.4 0.13 1.4 

3 12.5 0.19 1.5 0.21 1.7 

4 9.0 0.12 1.3 0.20 2.2 

Limitation of The Assay 

The performance of the Calcium-Arsenazo Assay has been verified at 37°C using cuvettes and 

reagents manufactured exclusively for Alfa Wassermann Diagnostic Technologies, LLC. 

• Disposable plasticware is highly recommended. Contamination of glassware with calcium 

(usually from detergents) will adversely affect this assay. All glassware MUST be thoroughly 

acid-washed prior to use. 

• Oxalate, citrate and EDTA anticoagulants interfere by binding calcium. 
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• Use clear, unhemolyzed serum. 

• False elevations of serum/ plasma calcium are caused by venous stasis during collection and by 

prolonged storage of blood. 

• Dust or other environmental contamination may increase the background of the reagent in the 

bottle and the reagent added to the cuvette. 

• A comprehensive list of drugs and other substances which can affect calcium concentration in 

serum/ plasma is given by Young, et al. 

Additional limitations for Specimen Collection, Storage and Handling and Performance 

Characteristics are listed in package insert. 

Magnesium 

Principles of The Assay 

For the quantitative determination of magnesium concentration in serum and lithium heparin 

plasma using the ACE Axcel® Clinical Chemistry Systems.  

The ACE Magnesium Assay is a colorimetric dye-complexing method that uses Xylidyl blue-1 

for a rapid, easy and accurate determination of magnesium in serum/ plasma. EGTA prevents 

calcium interference by preferential chelation of calcium present in the sample. A surfactant 

system is included to remove protein interference. 

Specimen Requirement 

• Obtain blood with minimum venous occlusion.  

• Separate specimen from the erythrocytes as soon as possible because the magnesium 

concentration in erythrocytes is substantially greater than in serum.1  

• Use clear, unhemolyzed serum or lithium heparin plasma. 

• Store serum/plasma in stoppered tubes if analysis is delayed. 

• Specimen stable for 7 days at 4-8°C and 1 year at -20°C if the serum/ plasma is separated from 

the erythrocytes. 

Quality Control 

• Alfa Wassermann Level 1 and Level 2 Chemistry Controls will be used for QC check.  

• Controls were run when a new reagent lot was loaded and/or recalibration of the test is 

performed. 

• Control values outside of acceptable limits will be troubleshoot prior to any sample analysis.   

• The manufacturer mean values and expected ranges were used for quality control. We 

recognize that our laboratory’s mean for this analyte may not duplicate the mean value printed 

on the manufacture’s insert, however, our control values fell within the expected range.  

Sensitivity  

Analytical Sensitivity - determined on the clinical chemistry systems according to CLSI Protocol 

EP17-A. The results are as follows: 
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 ACE ACE Alera ACE Axcel 

LoD (mg/dL) 0.39 0.37 0.34 

LoQ (mg/dL) 0.43 0.37 0.34 

Precision 

Precision - determined on the clinical chemistry systems according to CLSI Protocol EP5-A2.8  

System Sample 

Mean  

(g/dL) 

Within Run Total 

SD CV % SD CV % 

ACE Axcel 

(n = 21 days 

minimum) 

1 2.2 0.10 4.7 0.11 5.1 

2 4.0 0.11 2.8 0.12 2.9 

3 5.0 0.10 1.9 0.14 2.8 

4 1.7 0.12 6.7 0.13 7.5 

Limitation of The Assay 

The performance of the Magnesium Assay has been verified at 37°C using cuvettes and reagents 

manufactured exclusively for Alfa Wassermann Diagnostic Technologies, LLC. 

• Do not use hemolyzed samples. 

• A comprehensive list of drugs and other substances which can affect magnesium concentration 

in serum is given by Young, et al. 

Additional limitations for Specimen Collection, Storage and Handling and Performance 

Characteristics are listed in the package insert. 
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APPENDIX C.  

The Fibroblast Growth Factor 23 

Principles of The Assay 

This kit is intended for research use only in the quantitative determination of mouse FGF23 

levels in plasma, serum* or cell culture media. This assay is also useful in the determination of 

rat FGF23 levels.This Mouse FGF23 (Intact) ELISA Kit is a homologous, two-site enzymelinked 

immunosorbent assay (ELISA) for the measurement of intact FGF23. Two affinity purified goat 

polyclonal antibodies have been selected to detect epitopes within the amino-terminal and 

carboxylterminal regions of mouse FGF23. The amino-terminal antibody is biotinylated for 

capture and the carboxyl-terminal antibody is conjugated with the enzyme horseradish 

peroxidase (HRP) for detection. In a two-step reaction a sample containing mouse FGF23 is first 

incubated with the biotinylated antibody in a streptavidin coated microtiter well. After washing 

the well to remove any unbound antibody and other components, the well is incubated with the 

HRP conjugated antibody. FGF23 contained in the sample is immunologically bound by the 

capture antibody and the detection antibody to form a “sandwich” complex:  

Well/Avidin— Biotin Anti-mFGF23 — Mouse FGF23 — HRP Anti-mFGF23  

 (NH2-terminal)  (C-terminal)  

Following another wash the enzyme antibody bound to the well is incubated with a substrate 

solution in a timed reaction and then measured in a spectrophotometric microtiter plate reader. 

The enzymatic activity of the antibody complex bound to the well is directly proportional to the 

amount of FGF23 in the sample. A standard curve is generated by plotting the absorbance versus 

the respective FGF23 concentration for each standard on linear or logarithmic scales. The 

concentration of mouse FGF23 in the samples is determined directly from this curve.  

Specimen Requirement 

The FGF23 molecule appears to be unstable resulting in decreased immunoreactivity over 

time. Sample collection and storage procedures should be carried out in an expeditious 

manner. Due to the lability of the molecule EDTA plasma is the preferred sample type. *In 

mice, serum values can be approximately 10% lower than EDTA plasma values. However, in 

rats, serum values can be approximately 30% lower than EDTA plasma values. Forty 

microliters of EDTA plasma, serum or culture media are required to assay the sample in 

duplicate. Centrifuge the sample and separate the plasma, serum or media from the cells. 

Samples should be assayed immediately or stored frozen at -20ºC or below. Avoid repeated 

freezing and thawing of specimens. 

Quality Control 

To assure the validity of the results each assay should include adequate controls with known 

levels of mouse FGF23. Immutopics recommends that all assays include the laboratory’s own 

mouse FGF23 controls in addition to those provided with this kit.  

Sensitivity 

The sensitivity of the Mouse FGF23 (Intact) ELISA as determined by the 95% confidence limit 

on 20 duplicate determinations of the 0 pg/mL Standard is 6 pg/mL.  
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Specificity 

No data on specificity is available in package insert.  

Precision 

To assess intra-assay precision the mean and coefficient of variation were calculated from 20 

duplicate determinations of two samples each performed in a single assay. 

Mean Value (pg/mL)     Coefficient of Variation 

65       4.4 % 

170       2.3 % 

To assess inter-assay precision the mean and coefficient of variation were calculated from 

duplicate determinations of two samples performed in 20 assays. 

Mean Value (pg/mL)     Coefficient of Variation 

60       4.0 % 

167       4.0 % 

Limitation of The Assay 

The lowest concentration of mouse FGF23 measurable is 6 pg/mL (assay sensitivity) and the 

highest concentration of mouse FGF23 measurable without dilution is the value of the highest 

standard. 

2. The reagents in this Mouse FGF23 (Intact) ELISA kit have been optimized so that together 

with the two-step reaction the high dose “hook effect” is not a problem for samples with elevated 

FGF23 values. Samples with levels between the highest standard and 1,000,000 pg/mL will read 

greater than the highest standard and should be diluted 1:10 or greater with the 0 pg/mL Standard 

or optional Sample Diluent reagent and reassayed for correct values. 

3. Grossly lipemic samples may affect the immunological response and it is recommended that 

results obtained with such samples be scrutinized accordingly. 

4. Differences in protein concentration and protein type between samples and standards in an 

immunoassay contribute to "protein effects" and dose biases. When measuring low protein 

concentration culture media samples against high protein concentration standards, it is 

recommended that like samples be assayed together in the same assay to minimize this bias. 
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APPENDIX D.  

Parathyroid Hormone 

Principles of The Assay 

The Mouse PTH 1-84 ELISA Kit is a two-site enzyme-linked immunosorbent assay (ELISA) for 

the measurement of PTH in mouse plasma or cell culture media. Two different goat polyclonal 

antibodies have been affinity purified against mouse PTH to detect the biologically active intact 

form of mouse PTH. The antibody which recognizes epitopes within the midregion/C-terminal 

portion (39-84) of the peptide is biotinylated for capture. The other antibody, which recognizes 

epitopes within the N-terminal region (1-34), is conjugated with the enzyme horseradish 

peroxidase (HRP) for detection. 

A sample containing mouse intact PTH is incubated simultaneously with the biotinylated capture 

antibody and the HRP conjugated antibody in a streptavidin coated microtiter well. Intact PTH 

(1-84) contained in the sample is immunologically bound by the capture antibody and the 

detection antibody to form a “sandwich” complex: 

Well/Avidin-Biotin Anti-Mouse PTH — Mouse Intact PTH — HRP Anti-Mouse PTH 

At the end of this incubation period, the well is washed to remove any unbound antibody and 

other components. The enzyme bound to the well is then incubated with a substrate solution in a 

timed reaction and then measured in a spectrophotometric microtiter plate reader. The enzymatic 

activity of the antibody complex bound to the well is directly proportional to the amount of PTH 

1-84 in the sample. A standard curve is generated by plotting the absorbance versus the 

respective PTH 1-84 concentration for each standard on linear or logarithmic scales. The 

concentration of mouse intact PTH in the samples is determined directly from this curve. 

(Standards are analytically prepared from synthetic Mouse Intact PTH 1-84.) 

Specimen Requirement 

Store the kit at 2-8ºC upon receipt. Store the standards and controls at -20ºC or below after 

reconstitution. For the expiration date of the kit refer to the label on the kit box. All components 

are stable until this expiration date. 

Prior to use allow all reagents to come to room temperature and mix by gentle swirling and 

inversion. Reagents from different kit lot numbers should not be combined or interchanged. 

Quality Control 

To assure the validity of the results each assay should include adequate controls with known 

levels of mouse intact PTH. Immutopics recommends that all assays include the laboratory’s 

own mouse intact PTH controls in addition to those provided with this kit. 

Sensitivity 

The sensitivity of the mouse PTH 1-84 assay as determined by the 95% confidence limit on 20 

duplicate determinations of the 0 pg/mL Standard is 4 pg/mL. 

Precision 

To assess intra-assay precision the mean and coefficient of variation were calculated from 20 

duplicate determinations of two samples each performed in a single assay. 
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Mean Value (pg/mL) Coefficient of Variation 

63   5.6 % 

198   2.4 % 

To assess inter-assay precision the mean and coefficient of variation were calculated from duplicate 

determinations of two samples performed in 20 assays. 

Mean Value (pg/mL) Coefficient of Variation 

60   5.7 % 

209   5.4 % 

Limitation of The Assay 

1. The lowest concentration of mouse PTH 1-84 measurable is 4 pg/mL (assay sensitivity) and 

the highest concentration of mouse PTH 1-84 measurable without dilution is the value of the 

highest standard. 

2. The reagents in this Mouse PTH 1-84 ELISA kit have been optimized so that the high dose 

“hook effect” is not a problem for samples with elevated intact PTH values. Samples with 

mouse intact PTH levels between the highest standard and 500,000 pg/mL will read greater 

than the highest standard and should be diluted 1:10 with the 0 pg/mL Standard or optional 

Sample Diluent and reassayed for correct values. 

3. Grossly lipemic serum or plasma samples may affect the immunological response and it is 

recommended that results obtained with such samples be scrutinized accordingly. 

4. Differences in protein concentration and protein type between samples and standards in an 

immunoassay contribute to "protein effects" and dose biases. When measuring low protein 

concentration culture media samples against high protein concentration standards, it is 

recommended that like samples be assayed together in the same assay to minimize this bias. 
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APPENDIX E.  

Pilot Study Protocol 

An Investigation into the Mechanism of Parathyroid Hormone Modulation in Mice 

Following Acute Exposure to Positive and Negative Allosteric Modulators of Calcium 

Sensing Receptor 

1. OBJECTIVE 

In order to further investigate the mechanism of hypocalcemia caused by oral GSPT-1 degrader, 

CC0781325, there is need to establish the dynamic range for parathyroid hormone (PTH), 

vitamin D, PTH mRNA as well as other factors known to regulate PTH production, such as 

transcription factors GATA3, Gcm2, and MafB. To do so, this pilot study will be conducted with 

two molecules, a positive allosteric modulator of calcium sensing receptor (CaSR) (NPS R-568) 

and negative allosteric modulator of CaSR (NPS 2143). 

The objectives of this pilot study are as follow:  

1. To establish the baseline for iCa2+, Mg2+, phosphorus, albumin, pH, vitamin D, and PTH in 

huCRBN KI and establish the magnitude of change in these parameters after treatment with 

NPS R-568 and NPS 2143.   

2. To establish the correlation among circulating PTH level, intracellular PTH, and mRNA PTH 

in parathyroid.   

3. Establish the baseline and assess the magnitude of change in CaSR, PTH transcription factors 

GATA3, Gcm2, and MafB, as well at PTH mRNA before and after treatment with NPS R-

568 and NPS 2143. 

4. Assess the utility of NPS R-568 or NPS 2143 for mechanistic study of GSPT-1 associated 

hypocalcemia.    

2. MATERIALS AND METHODS 

2.1. Experimental Animals 

Male huCRBN KI homozygous knock-in (KI) mice will be obtained from Taconic and will be 

randomly assigned to toxicologic (Tox) assessment groups.  Animals will be used for 

toxicological evaluation after single oral dose.  Animals will be approximately 10-12 weeks old 

and weigh approximately 19 to 27 grams at the time of group assignment. Animals will be 

allowed to acclimate to the laboratory environment for a minimum of 5 days.  Pristima will be 

used to randomize animals to treatment groups using strata-based method.  Each group will be 

identified with a cage card bearing the study identification number and dosing group.  Assigned 

animal numbers will be written on tails using an indelible marker.   
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2.2. Housing and Environment 

HuCRBN KI mice assigned to each treatment groups will be group housed up to 5 animals per 

cage. Animal(s) might be housed individually if there is sign of fighting or injury.  Animals will 

be fed with Harlan Teklad diet and water ad libitum and housed with a 12-hour light/dark cycle.  

Mice will not be fasted prior to necropsy.   

2.3. Test Substances 

Identity: NPS R-568 [HCl Salt] 

Batch/Lot No.: 0000029590 

Supplier or Source:  Sigma-Aldrich INC.   

Formulation:  15% 2-Hydroxypropyl-β-cyclodextrin (HPβCD) 

Molecular Weight: 340.29 

Formula Weight: 322.29 

Correction Factor: 1.06 

Purity (%): ≥95% (HPLC) 

Identity: NPS 2143 [HCl Salt] 

Batch/Lot No.: 0000049663 

Supplier or Source:  Sigma-Aldrich INC.   

Formulation:  15% HPβCD 

Molecular Weight: 445.38 

Formula Weight: 427.38 

Correction Factor:  1.04 

Purity (%): ≥95% (HPLC) 

Storage Conditions: 

The bulk powder will be stored refrigerated (2-8°C) protected 

from light. The formulated material will be used with 4 hours 

of preparation stored at room temperature. 

Handling Precautions: 
Per standard laboratory precautions for biologically active 

compounds and according to SDS, if available. 

Supplier/Manufacturer: Sigma-Aldrich INC.   
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Certificate of Analysis: 

A certificate of analysis or equivalent describing the test 

article characterization will be placed in the study file and 

information included in the study report. 

Test Article: 

2.4. Dose Preparation and Administration 

The oral route of administration is chosen because in published studies (Fox et al., 1999;  

Gowen et al., 2000; Hannan et al., 2015; Nemeth et al., 2001), both NPS R-568 and NPS 2143 

were orally dose up to 100 mg/kg; no clinical signs of toxicity was reported in these studies.  

Formulations of NPS R-568 and NPS 2143 will be prepared from the bulk powder by mixing 

with the vehicle according to the procedure below.  Formulations will be prepared on each 

dosing day. The vehicle or test article formulation will be given orally a dose volume of 5 

mL/kg.  The required volume of vehicle or drug solution for each animal will be based on the 

most recent individual body weight. 

The vehicle, NPS R-568, and NPS 2143 formulations will be prepared according to the 

instructions below.   

Preparation of 100 mL of 15% HPβCD 

1. Place 15 g of HPβCD in a glass screw cap bottle 

2. Add 90 mL of HPLC grade water 

3. Stir to mix thoroughly until final solution forms. 

4. QS to 100 mL.  

NPS R-568 in 15% HPβCD 

1. Add the compound according to Table 1 to a small glass screw cap bottle. 

2. Add required volume of 15% HPβCD vehicle to the bottle. 

3. Vortex for 1 minutes. 

4. Sonicate the formulations for 1 minute. 

5. Vortex the formulations prior to dosing each animal. 

NPS 2143 in 15% HPβCD 

6. Add the compound according to Table 1 to a small glass screw cap bottle. 

7. Add required volume of 15% HPβCD vehicle to the bottle. 

8. Vortex for 1 minutes. 

9. Sonicate the formulations for 1 minute. 

10. Vortex the formulations prior to dosing each animal. 

Dose levels and dose concentrations are listed in Table 1. 
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Table 1: 

Dose Levels and Concentrations 

Group Treatment 
Dose Level 

(mg/kg) 

Formulation 

Concentration 

(mg/mL)  

Free Base 

Formulation 

Concentration 

(mg/mL) 

Salt 

1 Vehicle 0 0 0 

2 NPS R-568 50 10 10.6 

3 NPS 2143 200 40 41.6 

2.4.1. Formulation Analysis: 

Before dosing the animals on Day 1, one (1) aliquot of 200 µL will be taken from the middle 

portion of the formulations using positive displacement pipetting for accurate volume. Bubbles 

adhering to the side of the tip will be wiped off prior to dispensing to the tubes.  The aliquots will 

be stored at -80º C.  If formulation analysis becomes necessary, a protocol amendment will be 

issued to describe the detail of such analysis.   

Dose Selection Criteria  

There are no published or unpublished data on effects of NPS R-568 and NPS 2143 in huCRBN 

KI mice.  This is the first study to establish the effects of NPS R-568 and NPS 2143 in huCRBN 

KI mice.  As described above, the objective of this study is to further investigate the mechanism 

by which PTH decrease or increase in response to positive or negative allosteric modulation of 

CaSR.    

Negative Allosteric Modulator of CaSR (Agonism) NPS R-568 

NPS R-568 is a phenylalkylamine compound that acts as an agonist (calcimimetic) on 

parathyroid CaSR, making CaSR more sensitive to Ca2+ concentration. NPS R-568 potentiates 

the effects of circulating calcium on CaSR on parathyroid, leading to decreased parathyroid 

hormone levels.  The hypocalcemia response to NPS R-568 is due to rapid decrease in serum 

PTH levels (Fox et al., 1999).  In a study by (Fox et al., 1999), plasma PTH and Ca2+ levels after 

a single oral dose treatment with NPS R-568 (as the hydrochloride salt) at doses of 3.3, 10, 33, 

and 100 mg/kg were measured. Blood samples were collected for assay of plasma Ca2+ and PTH 

levels, immediately before and at 0.25, 0.5, 1, 1.5, 2, 4, 6, 24, and 48 h after the administration of 

NPS R-568 or vehicle. Plasma PTH levels were significantly reduced within 15 min of NPS  

R-568 administration and remained significantly lower up to 30 minutes.  The length of time that 

PTH level stayed low was dose dependent; the rate of restoration toward the baseline level was 

faster at the lower doses. Plasma PTH levels in rats dosed with 33 and 100 mg/kg remained at 

trough level up to 1-hour postdose, while PTH levels in rats receiving the 3.3 or 10 mg/kg doses 

were not significantly different from vehicle treatment group at this timepoint.  PTH levels in 

rats receiving the 33 and 100 mg/kg doses remained significantly lower than control group at  

2-hour postdose.  At ≥ 4-hour post dose, there was no significant difference in PTH level in any 

of the treatment groups. 
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In order to investigate objectives 1 and 2, we are selecting a dose that can keep PTH low for up 

to 4 hours postdose, and based on the published data discussed above, we are selecting 50 mg/kg.   

Positive Allosteric Modulator of CaSR (Antagonism) NPS 2143 

In an experiment by (Nemeth et al., 2001), Sprague Dawley (SD) rats were subject to 2-hour 

infusion with NPS 2143 at the rate of 1 mg/kg/min, which resulted in a rapid increase in plasma 

PTH levels that peaked (4-5 fold over baseline) about 30 minutes post start of infusion and 

stayed high for the duration of infusion.  The increase in PTH was associated with increase in 

plasma Ca2+ levels, which increased about 90 minutes after the start of the infusion and returned 

to baseline an hour after the end of infusion. Similar results were seen after intraperitoneal (ip) 

administration of 30 mg/kg NPS 2143 to mice. Oral administration of NPS 2143 prolonged the 

duration of PTH increase up to 4, and 24 hours after 30 and 100 mg/kg dose to mice and rats, 

respectively (Gowen et al., 2000; Hannan et al., 2015).  (Gowen et al., 2000; Hannan et al., 2015) 

In order to further investigate objectives 1 and 2, we are selecting a dose of NPS 2143 that can 

keep PTH high for at least 4 hours postdose, and based on the published data discussed above, 

we are selecting 200 mg/kg.   

Experimental Groups 

Male huCRBN KI mice will be assigned to experimental groups as indicated in Table 2 and will 

be treated once on Day 1.  

Table 2: 

Experimental Groups 

 
Animal 

Numbers 
Treatment 

Dose Level 

(mg /kg) 

Dose Volume 

(mL/kg) 

Group 1 2001-2030 Vehicle 0 5 

Group 2 3001-3030 NPS R-568 50 5 

Group 3 4001-4030 NPS 2143 200 5 

Table 3 below provides the schedule of treatment and collection time; all collections are 

terminal.   

Table 3: 

Blood and Tissue Collection Schedule 

Treatment 

Group 

0.5-hr 

Blood & TP 

1-hr 

Blood and Tissue 

2-hr* 

Blood & TP 

4-hr* 

Blood and Tissue 

Group 2 2001-2005 2006-2010 2011-2015 2016-2020 

Group 3 3001-3005 3006-3010 3011-3015 3016-3020 

Group 4 4001-4005 4006-4010 4011-4015 4016-4020 

n 15 15 15 15 

* = Tissues to be collected are: Thyroid/parathyroid; TP = Thyroid/parathyroid gland 
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2.5. Experimental Procedures 

2.5.1. Clinical Observations 

All animals will be observed for clinical signs pre-dose and approximately 1 hour after the end of 

each oral administration on dosing day and prior to necropsy.  All observations will be recorded 

into Pristima. Observations will include, but not limited to, grooming, stool consistency, central 

nervous system clinical signs and general activity.  Moribund animals may be sacrificed before 

study termination at the discretion of the study director. 

2.5.2. Body Weights 

Body weights of all animals will be recorded once prior to dosing.   

2.5.3.1. Clinical Laboratory Tests 

Serum chemistry parameters will be evaluated in all surviving animals on scheduled and 

unscheduled necropsy.  Clinical pathology tests will not be evaluated in animals found dead. 

2.5.3.2. Serum Chemistry 

At necropsy, 100 µL of whole blood will be collected via retro-orbital bleeding in capillary tube 

containing Li-heparin. iCa2+, Na+, K+, pH and Cl- will be measured on STAT Profile Prime 

analyzer (Nova Biomedical).  Data from this analysis will be imported into Pristima, Table 4.   

At necropsy, additional 600 µL of blood will be collected in a gold top tubes with serum 

separator.   Serum will be separated within 60 minutes of collection and aliquoted as follow:  

Aliquot 1: 75 µL of serum for PTH 

Aliquot 2: 75 µL of serum for Vitamin D2, D3 

Aliquot 3: 100 µL for serum chemistry panel (Table 5) 

Aliquot 4: Backup sample 

Electrolytes 

Table 4: 

Nova Stat Profile Prime Panel 

iCa2+ Na+ 

K+ Cl- 

pH  
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Table 5: 

Alfa Wassermann Serum Chemistry Panel 

Ca2+ Phosphorus 

Albumin Albumin/Globulin Ratio (calculated) 

Total Protein Globulin (calculated) 

Mg2+  

 

Table 6: 

ELISA Panels 

Parathyroid Hormone (PTH) 

1,25(OH)2D (Vitamin D2 and D3) 

2.5.4. Pathology  

Pathology evaluation consisting of gross findings and tissue collections will be performed at 

unscheduled and scheduled necropsy.  

2.5.4.1. Euthanasia 

All animals will be anesthetized with isofluorane then will be sacrificed via cervical dislocation.  

2.5.4.2. Gross Pathology 

The following tissues will be evaluated grossly from all Toxicologic Assessment animals 

euthanized early or terminated at study completion: 

Adrenal Liver/gall bladder Small Intestine 

Bone (sternebra, femur) Kidneys Spleen 

Brain Lung Skin 

Esophagus Mandibular lymph node Stomach 

Eyes Mesenteric lymph node Thymus 

Heart Pancreas Trachea 

Large intestine Skeletal muscle  Urinary bladder 

Testes Epididymis and seminal vesicle Prostate 

Thyroid/Parathyroid   

Additional tissues may be evaluated at the discretion of the pathologist or prosector. 

2.5.4.4. Histopathology 

The following tissues will be collected from unscheduled or at scheduled necropsy: 
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Thyroid/parathyroid Small intestine Gross lesions(b) 

Kidneys Femur(a)  
(a) Decalcified in formic acid following formalin fixation 
(b) Processed and examined only if considered drug related 

Tissues will be fixed in 10% buffered formalin. Thyroid/parathyroid gland and kidney will be 

sectioned and stained with hematoxylin and eosin and examined microscopically.  Small 

intestine and femur will be kept in formalin for potential future analysis.  If such analysis 

becomes necessary, a protocol amendment will be issued to detail the sample and data analysis.  

2.5.4.5. Immunohistochemistry  

Immunohistochemistry analysis of GSPT-1, GATA3, Gcm2, MafB, CaSR, and PTH in the 

parathyroid glands will be performed on the tissues collected at scheduled and unscheduled 

necropsy.  Other markers and/or tissues may be evaluated at the discretion of the pathologist or 

study director. 

2.5.4.6 In Situ Hybridization (ISH) 

In situ hybridization will be performed for PTH mRNA in parathyroid.   

2.6. Statistical Analysis 

Statistical analysis of quantitative clinical laboratory data will be conducted by Pristima.  A 

Dunnett LSD Test and Cochran and Cox Test will be performed for parametric and 

nonparametric analysis, respectively. 
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Page 1 of 6                      APPENDIX F. 
Individual and Summary of Body Weight (g) 

Males

Animal
 #

Group 
# 

Treatment
Day: 1 Day: 2 Day: 3 Day: 4 Day: 5
Session 1 Session 1 Session 1 Session 1 Session 1

Control 1001     24.7     22.9     21.2     21.7     22.9

1002     25.7     23.4     24.3     25.0     24.7

1003     25.4     25.2     24.5     23.4     24.3

1004     25.4     24.6     24.0     24.2     25.2

1005     25.2     25.0     25.2     25.1     25.8

1006     26.8     26.1     26.3     26.2     26.1

1007     26.6     26.7     26.4     26.2     27.2

1008     26.2     25.8     25.5     25.7     26.0

1009     26.3     26.2     26.8     26.9     26.6

1010     28.2     26.1     26.9     26.9     27.4

1011     27.3     27.4     27.2     27.9     27.2

1012     28.1     27.0     27.6     28.6     29.9

1013     27.5     27.9     28.3     28.4     28.2

1014     26.5     27.4     27.4     27.6     27.2

1015     26.6     26.5     25.5     25.4     25.1

1016     27.3     27.2     26.4     26.7     26.3

1017     28.3     27.5     27.4     27.7     27.4

1018     27.0     26.6     26.8     27.0     27.1

1019     27.2     26.6     26.8     26.8     27.0

1020     27.6     26.9     26.9     26.7     26.5

1021     28.2     26.2     26.2     26.1     26.2

1022     28.5     27.2     27.2     26.5     27.5

1023     29.4     28.8     29.1     28.2     29.1

1024     27.9     27.9     27.0     27.7     29.5

+D = Dunnett LSD Test Significant at the 0.01 level               

180              
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Males

Animal
 #

Group 
# 

Treatment

(n)
Means
SDevs

    25
    27.04
      1.189

    25
    26.48
      1.439

    25
    26.39
      1.673

    25
    26.48
      1.713

    25
    26.80
      1.683

Day: 1 Day: 2 Day: 3 Day: 4 Day: 5
Session 1 Session 1 Session 1 Session 1 Session 1

Control 1025     28.2     28.8     28.9     29.4     29.6

2 2001     23.9     23.4     21.8     21.0     20.3

2002     25.7     25.4     22.9     20.0     18.5

2003     25.4     24.1     22.9     21.1     19.3

2004     24.4     24.6     22.0     20.5     18.6

2005     23.5     23.2     21.6     19.2     18.8

2006     23.3     23.8     21.8     19.1     17.9

2007     26.5     25.6     24.7     21.6     19.5

2008     26.5     26.2     25.0     22.6     20.3

2009     26.3     25.2     23.9     22.1     20.9

2010     26.0     25.9     24.9     22.6     20.8

2011     27.2     26.9     24.2     21.7     20.4

2012     27.1     26.7     25.6     22.3     20.8

2013     27.1     26.2     25.8     22.8     21.1

2014     27.5     27.5     24.9     23.2     21.9

2015     27.3     24.2     21.9     20.7     19.7

2016     27.0     26.6     24.7     22.1     20.2

2017     27.7     27.1     25.4     22.8     21.3

2018     27.2     27.8     26.4     24.4     22.5

2019     28.3     27.3     24.6     22.4     21.5

2020     28.0     28.5     26.6     23.6     21.7

+D = Dunnett LSD Test Significant at the 0.01 level               

181              
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Males

Animal
 #

Group 
# 

Treatment

(n)
Means
SDevs

    25
    26.73
      1.637

    25
    26.27
      1.704

    25
    24.43
      1.624

    25
    22.14
      1.454

    25
    20.62+D
      1.319

Day: 1 Day: 2 Day: 3 Day: 4 Day: 5
Session 1 Session 1 Session 1 Session 1 Session 1

2 2021     27.5     27.2     25.4     23.8     22.8

2022     27.5     27.1     25.3     23.0     21.8

2023     29.3     28.5     26.0     23.7     21.7

2024     28.7     29.0     26.2     23.0     21.0

2025     29.3     28.8     26.2     24.2     22.3

3 3001        -        -        -        -     26.5

3002        -        -        -        -     26.3

3003        -        -        -        -     27.0

3004        -        -        -        -     27.8

3005        -        -        -        -     29.9

3006        -        -        -        -     28.2

3007        -        -        -        -     26.4

3008        -        -        -        -     27.3

3009        -        -        -        -     27.3

3010        -        -        -        -     28.1

3011        -        -        -        -     28.7

3012        -        -        -        -     27.9

3013        -        -        -        -     26.9

3014        -        -        -        -     24.2

3015        -        -        -        -     27.1

3016        -        -        -        -     26.1

+D = Dunnett LSD Test Significant at the 0.01 level               

182            
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Page 4 of 6  Individual and Summary of Body Weight (g)

Males

Animal
 #

Group 
# 

Treatment

(n)
Means
SDevs

      0
       -
       -

      0
       -
       -

      0
       -
       -

      0
       -
       -

    25
    27.13
      1.247

Day: 1 Day: 2 Day: 3 Day: 4 Day: 5
Session 1 Session 1 Session 1 Session 1 Session 1

3 3017        -        -        -        -     28.0

3018        -        -        -        -     27.2

3019        -        -        -        -     26.7

3020        -        -        -        -     27.3

3021        -        -        -        -     29.3

3022        -        -        -        -     24.9

3023        -        -        -        -     26.5

3024        -        -        -        -     25.9

3025        -        -        -        -     26.8

4 4001     23.6     22.4     22.7     20.8     19.0

4002     24.1     24.1     22.1     19.8     19.0

4003     24.1     23.6     20.7     19.8     18.8

4004     26.4     24.6     24.3     21.9     19.6

4005     26.1     25.6     23.0     21.9     19.6

4006     26.1     25.8     24.7     21.9     19.6

4007     28.1     26.0     24.7     21.9     21.5

4008     28.1     26.2     22.9     20.9     20.7

4009     26.6     26.0     23.7     21.7     20.4

4010     27.5     27.3     25.4     22.6     20.4

4011     26.1     26.3     24.4     21.9     19.7

4012     26.8     26.3     24.5     22.1     20.8

+D = Dunnett LSD Test Significant at the 0.01 level               
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Page 5 of 6  Individual and Summary of Body Weight (g)

Males

Animal
 #

Group 
# 

Treatment

(n)
Means
SDevs

    25
    27.16
      1.546

    25
    26.62
      1.691

    25
    24.81
      1.759

    25
    22.28
      1.374

    25
    20.86+D
      1.374

Day: 1 Day: 2 Day: 3 Day: 4 Day: 5
Session 1 Session 1 Session 1 Session 1 Session 1

4 4013     26.7     26.2     25.5     22.4     20.8

4014     28.1     27.9     26.4     24.5     23.4

4015     28.4     28.5     24.6     21.6     21.3

4016     27.4     26.7     24.7     22.0     20.1

4017     27.7     26.7     24.7     22.0     21.2

4018     28.7     28.3     26.3     22.5     23.1

4019     27.2     28.5     27.5     24.8     22.1

4020     28.4     27.9     26.1     23.2     21.0

4021     28.4     27.4     24.7     21.8     20.3

4022     27.6     27.7     27.3     25.1     23.0

4023     27.9     27.7     24.6     22.0     20.9

4024     28.9     28.1     26.1     23.4     21.4

4025     29.9     29.7     28.6     24.6     23.7

+D = Dunnett LSD Test Significant at the 0.01 level               
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               APPENDIX G. 
Summary of Daily Clinical Signs 

Page 1 of 7

Males

Treatment, Day 1

Category, Observations Dosage Groups: Control 7542

Number Examined: 25 25 25 6 6
25 25 25 6 6Number Normal:
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Page 2 of 7Summary of Daily Clinical Signs 

Males

Treatment, Day 2

Category, Observations Dosage Groups: Control 7542

Number Examined: 25 25 25 6 6
25 25 25 6 6Number Normal:
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Page 3 of 7Summary of Daily Clinical Signs 

Males

Treatment, Day 3

Category, Observations Dosage Groups: Control 7542

Number Examined: 25 25 25 6 6
25 25 25 6 6Number Normal:
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Page 4 of 7Summary of Daily Clinical Signs 

Males

Treatment, Day 4

Category, Observations Dosage Groups: Control 7542

Number Examined: 25 25 25 6 6
25 24 23 6 6Number Normal:

Gait/Posture, hunched posture 0 1 0 0 0

Hair, pilo-erection 0 1 2 0 0
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Page 5 of 7Summary of Daily Clinical Signs 

Males

Treatment, Day 5

Category, Observations Dosage Groups: Control 65432

Number Examined: 25 25 25 25 6 6
25 20 25 20 3 6Number Normal:

Gait/Posture, hunched posture 0 1 0 2 1 0

Hair, pilo-erection 0 5 0 5 3 0
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Page 6 of 7Summary of Daily Clinical Signs 

Males

Treatment, Day 5

Category, Observations Dosage Groups: 7

Number Examined: 6
4Number Normal:

Behavior, activity decreased 1

Hair, pilo-erection 2
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Page 7 of 7Summary of Daily Clinical Signs 
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Page 1 of 7                                    APPENDIX I. 
Individual and Summary of Serum Chemistry Axcel  Values 

Treatment Day  5   (Scheduled Animal Room -  Session 1)

Males
Group 

# 
Animal

 #
ALB
(g/dL)

CA
(mg/dL)

PHOS
(mg/dL)

GLOB
(g/dL)

A/G TP
(g/dL)

MG
(mg/dL)

        2.8         9.5         7.9         2.0         1.4         4.8          -

        3.0         9.9         6.7         1.7         1.8         4.7         3.1

        3.0         9.8         6.1         1.8         1.7         4.8         2.8

        3.0       10.1         5.7         2.2         1.4         5.2         2.9

        3.0         9.9         6.5         2.2         1.4         5.2         2.6

        3.1         9.8         8.0         2.1         1.5         5.2         2.9

        3.0         9.5         6.3         2.1         1.4         5.1         2.5

        3.1         9.9         6.5         2.2         1.4         5.3         2.7

        3.0         9.4         5.8         2.0         1.5         5.0         2.3

        3.1       10.0         6.5         1.8         1.7         4.9         2.4

        3.1         8.6         6.8         2.1         1.5         5.2         2.6

        3.3         9.9         5.3         2.1         1.6         5.4         2.6

        3.2         9.7         6.9         2.0         1.6         5.2         2.6

        3.4       10.2         8.1         2.5         1.4         5.9         3.0

        2.9         9.5         7.5         2.2         1.3         5.1         2.5

        3.0         9.5         5.7         2.4         1.3         5.4         2.6

        3.0         9.5         8.4         2.2         1.4         5.2         3.0

        3.2         9.8         7.3         2.3         1.4         5.5         2.4

        3.1         9.7         7.6         2.4         1.3         5.5         2.9

        3.1         9.6         8.1         2.1         1.5         5.2         2.8

Control 1001

1002

1003

1004

1005

1006

1007

1008

1009

1010

1011

1012

1013

1014

1015

1016

1017

1018

1019

1020

#C = Cochran and Cox Test Significant at the 0.001 level                      +C = Cochran and Cox Test Significant at the 0.01 level               
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Page 2 of 7  Individual and Summary of Serum Chemistry Axcel  Values

Treatment Day  5   (Scheduled Animal Room -  Session 1)

Males
Group 

# 
Animal

 #
ALB
(g/dL)

CA
(mg/dL)

PHOS
(mg/dL)

GLOB
(g/dL)

A/G TP
(g/dL)

MG
(mg/dL)

        3.0         9.6         7.0         2.4         1.3         5.4         2.6

        3.1         9.9         6.8         2.0         1.6         5.1         2.6

        3.0       10.2         6.0         2.1         1.4         5.1         2.5

        3.0       10.6         7.2         1.7         1.8         4.7         2.6

        3.3       10.2         5.8         2.5         1.3         5.8         2.6

        2.8         8.0         4.6         2.0         1.4         4.8         2.3

        2.9         5.3         9.9         2.0         1.5         4.9         2.3

        3.0         6.6         5.8         2.0         1.5         5.0         2.0

        2.9         6.6         5.3         2.1         1.4         5.0         1.8

        3.0         6.4         7.6         1.9         1.6         4.9         2.3

        2.9         6.4         9.3         1.6         1.8         4.5         2.5

        3.0         5.7       10.1         1.8         1.7         4.8         1.9

        4.5         6.8         7.3         0.4       11.3         4.9         2.5

        4.3         6.2         8.2         0.4       10.8         4.7         2.0

        4.4         7.0         9.4         0.5         8.8         4.9         2.5

        2.7         4.8       10.8         1.7         1.6         4.4         2.3

        2.8         5.3       10.2         1.8         1.6         4.6         2.0

Control 1021

1022

1023

1024

1025

(n)
Means
SDevs

      25
        3.07
        0.131

      25
        9.77
        0.378

      25
        6.82
        0.878

      25
        2.12
        0.224

      25
        1.48
        0.154

      25
        5.20
        0.299

      24
        2.67
        0.210

2 2001

2002

2003

2004

2005

2006

2007

2008

2009

2010

2011

2012

#C = Cochran and Cox Test Significant at the 0.001 level                      +C = Cochran and Cox Test Significant at the 0.01 level               
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Page 3 of 7  Individual and Summary of Serum Chemistry Axcel  Values

Treatment Day  5   (Scheduled Animal Room -  Session 1)

Males
Group 

# 
Animal

 #
ALB
(g/dL)

CA
(mg/dL)

PHOS
(mg/dL)

GLOB
(g/dL)

A/G TP
(g/dL)

MG
(mg/dL)

        2.8         6.3         9.4         1.8         1.6         4.6         2.3

        2.7         5.3       12.2         1.8         1.5         4.5         2.0

        2.6         5.6         5.9         1.6         1.6         4.2         2.1

        2.7         4.9       10.2         1.7         1.6         4.4         3.0

        3.1         6.1       10.6         1.9         1.6         5.0         2.2

        2.9         6.0       13.1         1.8         1.6         4.7         2.6

        3.2         5.5       11.6         2.0         1.6         5.2         2.3

        3.0         6.5       10.3         1.9         1.6         4.9         2.1

        2.9         6.7         8.9         1.7         1.7         4.6         2.0

        3.1         6.1       11.3         2.0         1.6         5.1         2.4

        3.1         5.7         9.5         2.0         1.6         5.1         2.8

        2.9         5.2       12.6         1.9         1.5         4.8         1.9

        3.2         9.6         5.3         2.0         1.6         5.2         2.4

        2.9       10.1         6.0         2.1         1.4         5.0         2.8

        3.0         9.7         6.3         2.0         1.5         5.0         2.7

        2.9       10.1         6.5         1.9         1.5         4.8         3.2

        2.7         9.7         5.5         1.8         1.5         4.5         2.9

2 2013

2014

2015

2017

2018

2019

2020

2021

2022

2023

2024

2025

(n)
Means
SDevs

      24
        3.09
        0.527

      24
6.04#C
        0.748

      24
9.34#C
        2.292

      24
1.68#C
        0.500

      24
        2.67
        2.973

      24
4.77#C
        0.254

      24
2.25#C
        0.296

3 3001

3002

3003

3004

3005

#C = Cochran and Cox Test Significant at the 0.001 level                      +C = Cochran and Cox Test Significant at the 0.01 level               
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Page 4 of 7  Individual and Summary of Serum Chemistry Axcel  Values

Treatment Day  5   (Scheduled Animal Room -  Session 1)

Males
Group 

# 
Animal

 #
ALB
(g/dL)

CA
(mg/dL)

PHOS
(mg/dL)

GLOB
(g/dL)

A/G TP
(g/dL)

MG
(mg/dL)

        2.7       10.7         7.3        -0.1      -27.0         2.6         3.0

        2.7       10.8         5.6        -2.3        -1.2         0.4         2.9

        2.6       11.4         8.8         2.0         1.3         4.6         3.4

        2.8       11.3         7.7         2.0         1.4         4.8         3.1

        2.8       11.2         6.8         1.7         1.6         4.5         3.3

        2.8       12.4         5.6         1.9         1.5         4.7         3.1

        2.6       12.0         6.0         1.9         1.4         4.5         3.2

        2.7       12.0         6.4         1.8         1.5         4.5         3.2

        2.5       10.8         5.7         1.6         1.6         4.1         2.9

        2.9       13.1         5.0         1.8         1.6         4.7         3.1

        2.7       13.3         9.7         1.8         1.5         4.5         2.9

        2.8       11.6         6.2         2.0         1.4         4.8         2.4

        2.9       11.5         6.0         2.3         1.3         5.2         2.4

        2.8       11.6         5.7         2.1         1.3         4.9         2.6

        2.9       11.9         5.6         1.7         1.7         4.6         2.7

        2.8         9.6         6.8         2.2         1.3         5.0         2.4

        3.1       10.4         4.9         2.4         1.3         5.5         3.0

        2.9         9.9         6.0         2.2         1.3         5.1         2.3

        2.9       10.2         6.6         2.2         1.3         5.1         2.4

        3.2       10.5         3.6         2.5         1.3         5.7         2.5

3 3006

3007

3008

3009

3010

3011

3012

3013

3014

3015

3016

3017

3018

3019

3020

3021

3022

3023

3024

3025

#C = Cochran and Cox Test Significant at the 0.001 level                      +C = Cochran and Cox Test Significant at the 0.01 level               
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Page 5 of 7  Individual and Summary of Serum Chemistry Axcel  Values

Treatment Day  5   (Scheduled Animal Room -  Session 1)

Males
Group 

# 
Animal

 #
ALB
(g/dL)

CA
(mg/dL)

PHOS
(mg/dL)

GLOB
(g/dL)

A/G TP
(g/dL)

MG
(mg/dL)

        3.1         6.5       10.7         1.8         1.7         4.9         2.2

        3.1         5.9         9.0         1.8         1.7         4.9         1.9

        2.9         6.4         7.6         1.8         1.6         4.7         2.9

        3.0         6.4       10.2         1.7         1.8         4.7         2.2

        2.8         5.3       10.9         1.6         1.8         4.4         2.3

        3.1         8.7         7.2         1.9         1.6         5.0         2.7

        2.8         8.1         8.9         1.9         1.5         4.7         2.9

        2.8         7.8         7.7         1.8         1.6         4.6         2.6

        3.0         7.4         8.2         1.9         1.6         4.9         2.5

        2.9         5.6       10.1         1.8         1.6         4.7         2.3

        2.8         6.0       10.5         1.8         1.6         4.6         2.3

        3.0         6.7       10.3         2.0         1.5         5.0         2.8

        2.8         5.9       10.1         1.8         1.6         4.6         2.3

        2.8         7.6       10.8         1.9         1.5         4.7         2.6

        2.7         5.7         7.6         1.6         1.7         4.3         2.6

        2.9         5.1       10.1         1.7         1.7         4.6         2.0

        2.6         5.2       11.0         1.9         1.4         4.5         2.3

3 (n)
Means
SDevs

      25
2.83#C
        0.173

      25
11.02#C
        1.066

      25
        6.22
        1.232

      25
        1.74
        0.966

      25
        0.20
        5.692

      25
4.57+C
        1.038

      25
        2.83
        0.333

4 4001

4002

4003

4004

4005

4006

4007

4008

4009

4010

4011

4012

4013

4014

4015

4016

4017

#C = Cochran and Cox Test Significant at the 0.001 level                      +C = Cochran and Cox Test Significant at the 0.01 level               
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Page 6 of 7  Individual and Summary of Serum Chemistry Axcel  Values

Treatment Day  5   (Scheduled Animal Room -  Session 1)

Males
Group 

# 
Animal

 #
ALB
(g/dL)

CA
(mg/dL)

PHOS
(mg/dL)

GLOB
(g/dL)

A/G TP
(g/dL)

MG
(mg/dL)

        2.7         7.6         7.8         1.7         1.6         4.4         2.5

        3.1         5.8       11.1         1.6         1.9         4.7         1.8

        2.7         5.4         9.3         1.7         1.6         4.4         1.8

        3.2         7.5       10.3         2.0         1.6         5.2         4.8

        3.0         7.1         8.3         2.1         1.4         5.1         1.9

        3.2         6.1       10.1         1.9         1.7         5.1         2.2

        2.8         5.6         8.4         1.8         1.6         4.6         2.2

        2.7         6.7       10.4         2.2         1.2         4.9         2.3

4 4018

4019

4020

4021

4022

4023

4024

4025

(n)
Means
SDevs

      25
2.90#C
        0.171

      25
6.48#C
        0.999

      25
9.46#C
        1.267

      25
1.83#C
        0.149

      25
        1.60
        0.143

      25
4.73#C
        0.242

      25
        2.44
        0.585

#C = Cochran and Cox Test Significant at the 0.001 level                      +C = Cochran and Cox Test Significant at the 0.01 level               
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Page 1 of 7  Individual and Summary of Electrolytes-iCa  Values

Treatment Day  5   (Scheduled Animal Room -  Session 1)

Males
Group 

# 
Animal

 #
CL
(mmol/L)

iCa
(mg/dL)

K
(mmol/L)

NA
(mmol/L)

pH

    118.0         5.16         4.87     148.0         7.008

    117.0         5.13         4.70     144.0         7.245

    116.0         5.03         4.56     144.0         7.242

    117.0         5.23         4.68     143.0         7.215

    116.0         5.10         4.92     144.0         7.234

    116.0         4.93         5.34     145.0         7.341

    116.0         5.01         5.19     142.0         7.295

    116.0         4.99         5.18     144.0         7.347

    116.0         4.81         5.30     141.0         7.318

    115.0         4.84         5.17     143.0         7.309

    112.0         4.98         5.58     144.0         7.238

    111.0         5.12         4.80     146.0         7.300

    112.0         4.86         5.04     145.0         7.300

    113.0         4.95         6.06     148.0         7.256

    112.0         4.98         5.37     144.0         7.219

    114.0         5.11         5.64     146.0         7.266

    113.0         5.02         5.13     146.0         7.198

    114.0         5.01         5.16     146.0         7.253

    114.0         5.15         5.00     149.0         7.226

    113.0         4.99         4.81     147.0         7.248

Control 1001

1002

1003

1004

1005

1006

1007

1008

1009

1010

1011

1012

1013

1014

1015

1016

1017

1018

1019

1020

#C = Cochran and Cox Test Significant at the 0.001 level                      *C = Cochran and Cox Test Significant at the 0.05 level               
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Page 2 of 7  Individual and Summary of Electrolytes-iCa  Values

Treatment Day  5   (Scheduled Animal Room -  Session 1)

Males
Group 

# 
Animal

 #
CL
(mmol/L)

iCa
(mg/dL)

K
(mmol/L)

NA
(mmol/L)

pH

    110.0         4.97         5.34     146.0         7.362

    109.0         4.98         4.86     144.0         7.202

    110.0         5.03         5.06     144.0         7.254

    109.0         5.06         4.84     144.0         7.216

    111.0         4.91         5.27     145.0         7.300

    121.0         4.63         5.50     148.0         7.208

         -          -         4.91          -          -

    113.0         3.71         4.48     143.0         7.306

    117.0         3.65         4.31     145.0         7.345

    117.0         3.38         4.51     146.0         7.314

    118.0         3.56         5.29     146.0         7.239

    114.0         2.98         4.42     141.0         7.274

    118.0         3.54         5.28     146.0         7.269

    117.0         3.31         4.64     144.0         7.286

    117.0         3.65         5.40     144.0         7.271

    110.0         3.02         5.13     147.0         7.200

    110.0         3.17         4.74     144.0         7.300

Control 1021

1022

1023

1024

1025

(n)
Means
SDevs

      25
    113.60
        2.661

      25
        5.014
        0.1030

      25
        5.115
        0.3383

      25
    144.88
        1.878

      25
        7.2557
        0.06933

2 2001

2002

2003

2004

2005

2006

2007

2008

2009

2010

2011

2012

#C = Cochran and Cox Test Significant at the 0.001 level                      *C = Cochran and Cox Test Significant at the 0.05 level               
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Page 3 of 7  Individual and Summary of Electrolytes-iCa  Values

Treatment Day  5   (Scheduled Animal Room -  Session 1)

Males
Group 

# 
Animal

 #

#C = Cochran and Cox Test Significant at the 0.001 level                      *C = Cochran and Cox Test Significant at the 0.05 level               

CL
(mmol/L)

iCa
(mg/dL)

K
(mmol/L)

NA
(mmol/L)

pH

    113.0         3.58         4.95     146.0         7.267

    110.0         3.07         5.00     145.0         7.247

    113.0         3.26         4.88     146.0         7.205

    113.0         3.02         4.73     145.0         7.120

    113.0         3.17         4.79     151.0         7.153

    112.0         3.55         5.38     146.0         7.266

    113.0         3.41         4.88     147.0         7.211

    113.0         3.13         4.40     143.0         7.235

    112.0         3.58         4.80     145.0         7.242

    112.0         3.88         4.16     150.0         7.240

    113.0         3.21         5.72     151.0         7.227

    115.0         3.24         4.92     152.0         7.145

    109.0         2.96         4.92     145.0         7.228

    116.0         4.88         5.12     141.0         7.298

    114.0         5.32         4.67     141.0         7.234

    116.0         5.40         4.80     143.0         7.292

    114.0         5.07         4.93     142.0         7.343

2 2013

2014

2015

2016

2017

2018

2019

2020

2021

2022

2023

2024

2025

(n)
Means
SDevs

      24
    113.88
        3.026

      24
3.403#C
        0.3691

      25
        4.886
        0.3937

      24
    146.08
        2.701

      24
        7.2416
        0.05395

3 3001

3002

3003

3004
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Page 4 of 7  Individual and Summary of Electrolytes-iCa  Values

Treatment Day  5   (Scheduled Animal Room -  Session 1)

Males
Group 

# 
Animal

 #
CL
(mmol/L)

iCa
(mg/dL)

K
(mmol/L)

NA
(mmol/L)

pH

    116.0         5.01         5.35     141.0         7.272

    116.0         6.32         4.96     143.0         7.159

    113.0         6.20         4.84     140.0         7.381

    116.0         6.47         5.18     143.0         7.130

    117.0         6.06         4.39     143.0         7.262

    114.0         6.01         4.82     141.0         7.287

    115.0         6.67         5.08     148.0         7.227

    114.0         6.52         4.89     145.0         7.234

    114.0         6.52         5.10     146.0         7.208

    113.0         5.88         5.11     145.0         7.265

    111.0         6.55         5.07     144.0         7.320

    111.0         6.37         4.93     141.0         7.212

    114.0         6.24         4.76     147.0         7.159

    114.0         5.78         5.21     144.0         7.330

    115.0         5.89         5.43     145.0         7.174

    116.0         6.25         5.34     147.0         7.279

    112.0         3.58         4.80     145.0         7.242

    113.0         5.05         5.58     144.0         7.262

    111.0         4.89         5.51     142.0         7.317

    112.0         5.05         5.50     144.0         7.313

3 3005

3006

3007

3008

3009

3010

3011

3012

3013

3014

3015

3016

3017

3018

3019

3020

3021

3022

3023

3024

#C = Cochran and Cox Test Significant at the 0.001 level                      *C = Cochran and Cox Test Significant at the 0.05 level               
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Males
Group 

# 
Animal

 #
CL
(mmol/L)

iCa
(mg/dL)

K
(mmol/L)

NA
(mmol/L)

pH

    112.0         5.34         5.20     144.0         7.282

    116.0         3.51         4.67     143.0         7.261

    117.0         3.25         5.19     144.0         7.285

    122.0         3.58         5.82     151.0         7.159

    116.0         3.53         5.43     146.0         7.247

    114.0         2.77         5.24     141.0         7.288

    117.0         4.84         5.18     147.0         7.263

    116.0         4.33         4.96     144.0         7.217

    119.0         4.24         4.63     148.0         7.211

    113.0         4.07         5.01     141.0         7.115

    111.0         2.92         3.97     137.0         7.224

    112.0         3.52         4.34     146.0         7.245

    113.0         3.73         4.93     149.0         7.205

    112.0         3.40         4.73     145.0         7.267

    114.0         4.12         5.18     145.0         7.207

    112.0         3.37         5.72     150.0         7.219

    112.0         3.02         3.97     142.0         7.218

3 3025

(n)
Means
SDevs

      25
    113.96
        1.791

      25
5.733#C
        0.7488

      25
        5.063
        0.2912

      25
143.56*C
        2.142

      25
        7.2593
        0.06217

4 4001

4002

4003

4004

4005

4006

4007

4008

4009

4010

4011

4012

4013

4014

4015

4016

#C = Cochran and Cox Test Significant at the 0.001 level                      *C = Cochran and Cox Test Significant at the 0.05 level               
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Males
Group 

# 
Animal

 #
CL
(mmol/L)

iCa
(mg/dL)

K
(mmol/L)

NA
(mmol/L)

pH

    115.0         3.11         5.42     148.0         7.160

    115.0         4.17         5.51     148.0         7.252

    111.0         3.28         4.62     143.0         7.275

    112.0         3.13         4.33     144.0         7.229

    116.0         4.45         3.47     157.0         6.985

    112.0         3.95         5.12     148.0         7.273

    115.0         3.34         5.47     154.0         7.262

    113.0         3.29         5.02     148.0         7.214

    114.0         3.75         5.49     152.0         7.192

4 4017

4018

4019

4020

4021

4022

4023

4024

4025

(n)
Means
SDevs

      25
    114.36
        2.644

      25
3.627#C
        0.5249

      25
        4.937
        0.5832

      25
    146.44
        4.407

      25
        7.2189
        0.06439

#C = Cochran and Cox Test Significant at the 0.001 level                      *C = Cochran and Cox Test Significant at the 0.05 level               
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